Bifurcation manifolds in a multiparametric eigenvalue problem for linear hydromagnetic stability theory

Authors

  • Adelina Georgescu Polytechnic Institute, Bucharest, Romania
  • Iuliana Oprea Polytechnic Institute, Bucharest, Romania
  • Constantin Oprea Polytechnic Institute, Bucharest, Romania
Abstract views: 143

Abstract

Not available.

Downloads

Download data is not yet available.

References

A. Georgescu, Variational formulation of some nonselfadjoint problems occuring in Bènard instability theory, I. INCREST, Bucharest, Preprint Series in Mathematics, no.35/1977.

A. Georgescu, Characteristic equations for some eigenvalue problems in hydromagnetic stability theory. Mathematica (Cluj) 24(47) (1982), no. 1-2, 31-41, MR0692182.

A. Georgescu, V. Cardoş, Neutral curves for a thermal convection problem, Acta Mechanica, 37 (1980), pp. 165-168, https://doi.org/10.1007/bf01202940

A. Georgescu, Catastrophe surfaces bounding the domain of linear hydromagnetic stability, Central Institute of Physics, National Institute for Scientific and Technical Creation, FT-203-1981.

L. Collatz, Remark on bifurcation problems with several parameters. Ordinary and partial differential equations (Proc. Sixth Conf., Univ. Dundee, Dundee, 1980), pp. 82-87, Lecture Notes in Math., 846, Springer, Berlin, 1981, MR0610636.

S. Chandrasekhar, The stability of viscous flow between rotating cylinders in the presence of a magnetic field. Proc. Roy. Soc. London. Ser. A. 216, (1953). 293-309, MR0053709, https://doi.org/10.1098/rspa.1953.0023

Downloads

Published

1989-08-01

How to Cite

Georgescu, A., Oprea, I., & Oprea, C. (1989). Bifurcation manifolds in a multiparametric eigenvalue problem for linear hydromagnetic stability theory. Anal. Numér. Théor. Approx., 18(2), 123–138. Retrieved from https://ictp.acad.ro/jnaat/journal/article/view/1989-vol18-no2-art4

Issue

Section

Articles