Bifurcation manifolds in a multiparametric eigenvalue problem for linear hydromagnetic stability theory

Authors

  • Adelina Georgescu Polytechnic Institute, Bucharest, Romania
  • Iuliana Oprea Polytechnic Institute, Bucharest, Romania
  • Constantin Oprea Polytechnic Institute, Bucharest, Romania
Abstract views: 149

Abstract

Not available.

Downloads

References

A. Georgescu, Variational formulation of some nonselfadjoint problems occuring in Bènard instability theory, I. INCREST, Bucharest, Preprint Series in Mathematics, no.35/1977.

A. Georgescu, Characteristic equations for some eigenvalue problems in hydromagnetic stability theory. Mathematica (Cluj) 24(47) (1982), no. 1-2, 31-41, MR0692182.

A. Georgescu, V. Cardoş, Neutral curves for a thermal convection problem, Acta Mechanica, 37 (1980), pp. 165-168, https://doi.org/10.1007/bf01202940

A. Georgescu, Catastrophe surfaces bounding the domain of linear hydromagnetic stability, Central Institute of Physics, National Institute for Scientific and Technical Creation, FT-203-1981.

L. Collatz, Remark on bifurcation problems with several parameters. Ordinary and partial differential equations (Proc. Sixth Conf., Univ. Dundee, Dundee, 1980), pp. 82-87, Lecture Notes in Math., 846, Springer, Berlin, 1981, MR0610636.

S. Chandrasekhar, The stability of viscous flow between rotating cylinders in the presence of a magnetic field. Proc. Roy. Soc. London. Ser. A. 216, (1953). 293-309, MR0053709, https://doi.org/10.1098/rspa.1953.0023

Downloads

Published

1989-08-01

Issue

Section

Articles

How to Cite

Georgescu, A., Oprea, I., & Oprea, C. (1989). Bifurcation manifolds in a multiparametric eigenvalue problem for linear hydromagnetic stability theory. Anal. Numér. Théor. Approx., 18(2), 123-138. https://ictp.acad.ro/jnaat/journal/article/view/1989-vol18-no2-art4