General estimates for the linear positive operators which preserve linear functions

Authors

  • Radu Păltănea University of Braşov, Romania
Abstract views: 130

Abstract

Not available.

Downloads

Download data is not yet available.

References

A. Yu. Brudnyi, On a method of approximation of bounded fucntions defined in an interval (in Russian), Studies in Contemporary Problems Constructive Theory of Functions, Proc. Second AII-Union conference, Baku (1962), II. Ibragimov ed. Izdat. Akad. Nauk Azerbaidzan S.S.R. Baku (1965), pp. 40-45.

A. R., DeVore, The approximation of continuous functions by positive linear operators. Lecture Notes in Mathematics, Vol. 293. Springer-Verlag, Berlin-New York, 1972, MR0420083.

H. H. Gonska, On approximation by linear operators: improved estimates. Anal. Numér. Théor. Approx. 14 (1985), no. 1, 7-32, MR0830510.

R. Păltănea, Improved estimates with the second order modulus of continuity in approximation by linear positive operators. Anal. Numér. Théor. Approx. 17 (1988), no. 2, 171-179, MR1027224.

R. Păltănea, Improved constant in approximation by Bernstein polynomials. Itinerant Seminar on Functional Equations, Approximation and Convexity (Cluj-Napoca, 1988), 261-268, Preprint, 88-6, Univ. "Babeş-Bolyai", Cluj-Napoca, 1988, MR0993580.

P. C. Sikkema, Über den Grad der Approximation mit Bernstein-Polynomen. (German) Numer. Math. 1 1959 221-239, MR0110178, https://doi.org/10.1007/bf01386387

P. C. Sikkema, P. C. Der Wert einiger Konstanten in der Theorie der Approximation mit Bernstein-Polynomen. (German) Numer. Math. 3 1961 107-116, MR0123128, https://doi.org/10.1007/bf01386008

Downloads

Published

1989-08-01

How to Cite

Păltănea, R. (1989). General estimates for the linear positive operators which preserve linear functions. Anal. Numér. Théor. Approx., 18(2), 147–159. Retrieved from https://ictp.acad.ro/jnaat/journal/article/view/1989-vol18-no2-art6

Issue

Section

Articles