A note on the Jensen-Hadamard inequality
Abstract
Not available.Downloads
References
Artin, E., The Gamma function, Holt, Reinhart and Winston, 1964.
Hadamard, J., Etude sur les proprietes des fonctions entiéres et particulier d'une fonction consiérée par Reimann, J. Math. Pures Appl. 58 (1893), 171-215.
Janić, R.R., (Editor), Mathematička biblioteka 42 (1970), pp. 138-141.
Jensen, J.L.W.V., On konvexe funktioner og uligheder mellem middelvaerdier, Nyt. Tidsskr for Math. 16B (1905), 49-69.
Jensen J.L.W.V., Sur les fonctions convexes et les inégalités entres les valeurs moyennes, Acta Math. 30 (1906), 175-193, https://doi.org/10.1007/bf02418571
Kershaw, D., Some extensions of W. Gautschi's inequalities for the Gamma function, Math. Comp. 14 (1983), 607-611, https://doi.org/10.1090/s0025-5718-1983-0717706-5
Lupaş, A., A generalization of Hadamard's inequalities for convex functions, Univ. Beograd Publ. Elektr. Fak. Ser. Mat. Fiz. No.544-No.576 (1976), 115-121.
Lupaş, A., Jensen-type inequalities in approximation theory, Gay. Mat. Perf. Met. Metod. Mat. Inf. 9, no.1, 1988, 41-48.
Mitrinović D.S.,(In coorrporation with Vasić, P.M., Analyitic Inequalities, Springer Verlag 1970.
Pólya, G. and Syegö, G., Aufgaben und Lehrsätye aus der Analysis, Springer Verlag, 1924.
Sándor, J., Some integral inequalities, El. Math. 43 (1988), 177-180.
Sándor, J., Sur la fonction Gamma, Publ. C.R.M.P. Neuchâtel, Serie I, 21, pp.4-7, 1989.
Sándor, J., An application of the Jensen-Hadamard inequality, Nieuw Arch. Wiskunde, (to appear).
Vasić, P.M. and Locković, I.B., Notes on convex functions (I), Univ. Beog. Publ. Elektr. Fak. Ser. Mat. Fiz. No.577-No 598 (1977), 21-24.
Wang, Ch. L., and Wang, X.H., On an extension of Hadamard inequalities for convex functions, Chinese Ann. Math. 3(1982), no.5, 567-570.
Whittaker E.T., and Watson G.N., A course of modern analysis, Cambridge Univ. Press, 1969.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2015 Journal of Numerical Analysis and Approximation Theory
This work is licensed under a Creative Commons Attribution 4.0 International License.
Open Access. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.