Properties of bounded convex sequences

Authors

  • Igor Ž. Milovanović University of Nis, Serbia
  • Milan A. Kovačević University of Nis, Serbia
  • Gh. Toader "Babeş-Bolyai" University, Cluj-Napoca, Romania
Abstract views: 163

Abstract

Not available.

Downloads

Download data is not yet available.

References

Bary, N. K., A treatise on trigonometric series, New York, Pergamon Press, 1964.

Bary, W., Stanojević, Č. V., Tauberian L¹-convergence classes of Fourier series, Trans. Amer. Math. Soc., 275(1983), pp. 59-69, https://doi.org/10.1090/s0002-9947-1983-0678336-3

Edwards, R. E., Fourier series, Vol. 1 Springer Verlag, 1979, https://doi.org/10.1007/978-1-4612-6208-4

Fomin, G. A., On some conditions for the convergence classes of Fourier series in L metric, Mat. Zametki 21(1977), pp. 587-592. (Russian).

Fomin, G. A., On a class of tgrigonometric series. Mat. Zametki 23(1978), pp. 213-222. (Russian).

Fomin, G. A., On the convergence of Fourier series in the mean, Mat. Sbornik 110 (1979), pp. 215-265. (Russian).

Garrett, J. W., Rees, C. S. Stanojević, Č. V., L¹ convergence of Fourier series with coefficients of bounded variation, Proc. Amer. Math. Soc. 60(1976), pp. 68-71.

Hardy, C. H., Rogosinski, W. W., Fourier series, New York, Cambridge Univ. Press. 1956.

Kolmogorov, A. N., Sur l'ordre de grandeur des coefficients de la série de Fourier-Lebesque, Bull. Internat. Acad. Polon. Sci. Letters Cl. Sci. Math. Natur. Ser. A (1923), pp. 83-86.

Reade, J. B., On the order of magnitude of Fourier coefficients, SIAM J. Math. Anal. 17(1986), pp. 469-476, https://doi.org/10.1137/0517036

Stanojević, Č. V., Classes of L¹-convergence of Fourier and Fourier-Stieltjes series Proc. Amer. Math. Soc. 82(1981), pp. 209-215, https://doi.org/10.1090/s0002-9939-1981-0609653-4

Tanović-Miller, N., On a paper of Bojanić and Stanojević, Rend. Circ. Mat. Palermo, Ser II, 34(2) (1985), pp. 310-324, https://doi.org/10.1007/bf02850704

Toader, Gh., Convex sequences and Fourier series, Univ. "Babeş-Bolyai", Preprint 7(1987), pp. 35-42.

Toader, Gh., On the convexity of high order of sequences, Publ. l'Inst. Math., 43(57) (1988), pp. 35-40.

Young, W. H., On the Fourier series of bounded functions, Proc. London Math. Soc. 12(2)(1913), pp. 41-70, https://doi.org/10.1112/plms/s2-12.1.41

Žuk, V. V., Approximation of periodical functions, Univ. Leningrad, 1982 (Russian).

Downloads

Published

1990-02-01

How to Cite

Milovanović, I. Ž., Kovačević, M. A., & Toader, G. (1990). Properties of bounded convex sequences. Anal. Numér. Théor. Approx., 19(1), 53–58. Retrieved from https://ictp.acad.ro/jnaat/journal/article/view/1990-vol19-no1-art9

Issue

Section

Articles