Properties of bounded convex sequences
Abstract
Not available.Downloads
References
Bary, N. K., A treatise on trigonometric series, New York, Pergamon Press, 1964.
Bary, W., Stanojević, Č. V., Tauberian L¹-convergence classes of Fourier series, Trans. Amer. Math. Soc., 275(1983), pp. 59-69, https://doi.org/10.1090/s0002-9947-1983-0678336-3
Edwards, R. E., Fourier series, Vol. 1 Springer Verlag, 1979, https://doi.org/10.1007/978-1-4612-6208-4
Fomin, G. A., On some conditions for the convergence classes of Fourier series in L metric, Mat. Zametki 21(1977), pp. 587-592. (Russian).
Fomin, G. A., On a class of tgrigonometric series. Mat. Zametki 23(1978), pp. 213-222. (Russian).
Fomin, G. A., On the convergence of Fourier series in the mean, Mat. Sbornik 110 (1979), pp. 215-265. (Russian).
Garrett, J. W., Rees, C. S. Stanojević, Č. V., L¹ convergence of Fourier series with coefficients of bounded variation, Proc. Amer. Math. Soc. 60(1976), pp. 68-71.
Hardy, C. H., Rogosinski, W. W., Fourier series, New York, Cambridge Univ. Press. 1956.
Kolmogorov, A. N., Sur l'ordre de grandeur des coefficients de la série de Fourier-Lebesque, Bull. Internat. Acad. Polon. Sci. Letters Cl. Sci. Math. Natur. Ser. A (1923), pp. 83-86.
Reade, J. B., On the order of magnitude of Fourier coefficients, SIAM J. Math. Anal. 17(1986), pp. 469-476, https://doi.org/10.1137/0517036
Stanojević, Č. V., Classes of L¹-convergence of Fourier and Fourier-Stieltjes series Proc. Amer. Math. Soc. 82(1981), pp. 209-215, https://doi.org/10.1090/s0002-9939-1981-0609653-4
Tanović-Miller, N., On a paper of Bojanić and Stanojević, Rend. Circ. Mat. Palermo, Ser II, 34(2) (1985), pp. 310-324, https://doi.org/10.1007/bf02850704
Toader, Gh., Convex sequences and Fourier series, Univ. "Babeş-Bolyai", Preprint 7(1987), pp. 35-42.
Toader, Gh., On the convexity of high order of sequences, Publ. l'Inst. Math., 43(57) (1988), pp. 35-40.
Young, W. H., On the Fourier series of bounded functions, Proc. London Math. Soc. 12(2)(1913), pp. 41-70, https://doi.org/10.1112/plms/s2-12.1.41
Žuk, V. V., Approximation of periodical functions, Univ. Leningrad, 1982 (Russian).
Downloads
Published
Issue
Section
License
Copyright (c) 2015 Journal of Numerical Analysis and Approximation Theory
This work is licensed under a Creative Commons Attribution 4.0 International License.
Open Access. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.