A new subclass of quasi convex functions
Abstract
Not available.Downloads
References
S. M. Bernardi, Convex and starlike univalent functions, Trans. Amer. Math. Soc. 135 (1969), pp. 429-446, https://doi.org/10.1090/s0002-9947-1969-0232920-2
A. W. Goodman, Univalent Functions, Vol. 1.II, Mariner Publishing Company Inc. Tampa, Florida, (1982).
I. S. Jack, Functions starlike and convex of order α, J. London Math. Soc. (2), 3(1971), pp. 469-474, https://doi.org/10.1112/jlms/s2-3.3.469
R. J. Libera, Some radius of convexity problems, Duke Math. J., (1964), pp. 143-158, https://doi.org/10.1215/s0012-7094-64-03114-x
J. I. Noor, and H., Alkhorasani, Properties of close-to-convexity preserved by some integral operators, J. Math. Anal. α Appl. 112(1985), pp. 509-516, https://doi.org/10.1016/0022-247x(85)90260-4
K. I. Noor and H., Alkhorasani, Generalized of Livingstone's operator for certain classes of univalent functions, to appear.
K. I. Noor, On a subclass of close-to-convex functions, coom. Math. Univ. St. Pauli, 29(1980), pp. 25-28.
J. I. Noor and D. K., Thomas, On quasi-convex univalent functions, Int. J. Math. & Math. Sci. 3 (1980), pp. 255-266, https://doi.org/10.1155/s016117128000018x
C. P. McCarty, Functions with real part greater than α, Proc. Amer. Math. Soc. 35(1972), pp. 211-216, https://doi.org/10.1090/s0002-9939-1972-0298014-0
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2015 Journal of Numerical Analysis and Approximation Theory
This work is licensed under a Creative Commons Attribution 4.0 International License.
Open Access. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.