Spline approximation with preservation of moments
Abstract
Not available.Downloads
References
W. Gautschi, Discrete approximation to spherically symmetric distributions, Numer. Math. 44(1984), pp. 53-60, https://doi.org/10.1007/bf01389754
W. Gautschi, G. V. Milovanovič, Spline approximations to spherically symmetric distributions, Numer. Math. 49(1986), pp. 111-121, https://doi.org/10.1007/bf01389619
M. Frontini, W. Gautschi, G. V. Milovanovič, Moment-preserving spline approximation of finite intervals, Numer. Math. 50(1987), pp. 503-518, https://doi.org/10.1007/bf01408572
T. Popoviciu, Asupra unei generalizări a formule de integrare numerică a lui Gauss, Studii şi cercetări ştiinţfiice (Iaşi), 6(1955), pp. 29-57.
D. D. Stancu, Sur quelques formules générates de quadrature du type Gauss-Christoffel, Mathematica (Cluj), 1(24), pp. 167-182.
A. H. Stroud, D. D. Stancu, Quadrature formulas with multiple Gaussian nodes, SIAM J. Numer. Anal., Series B2(1965), pp. 129-143, https://doi.org/10.1137/0702011
P. Turán, On the theory of the mechanical quadrature, Acta Sci. Math. (Szeged), 12(1950), pp. 30-37.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2015 Journal of Numerical Analysis and Approximation Theory
This work is licensed under a Creative Commons Attribution 4.0 International License.
Open Access. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.