Some functional equations connected with quadratic forms
Abstract
Not available.Downloads
References
J. Aczél, The general solution of two functional equaitons by reduction to functions additive in two variables and with the aid of Hamel bases. Glasnik Mat. Fiz. Astr., 20(1965), 1-2, pp. 65-71.
I. Corovei, On some functional equations for the homomorphisms. Bul. Ştiinţf. Inst. Pol. Cluj-Napoca, Nr. 22, 1979, pp. 14-19.[3] I. Corovei, Ecuaţia funcţională f(xy)+f(xy⁻¹)=2f(x)+2f(y) pe grupuri. Inst. Ştiinţ. Tehnică-matematică VIII Sibiu, 1980, pp. 10-14.
T. M. K. Davison, Restricted homogeneity implies bi-edditivity, ann Polonici Math., XLVIII, 1988, pp. 121-125, https://doi.org/10.4064/ap-48-2-121-125
M. Hosszu, M. Csikos, Normenquadrat über gruppan. Symposium en quasigroupes et equations functionnelles. Beograd-Novi-Sad 9, (1974), pp. 18-21.
N. Jacobson, Basic algebra I.W.H. Freeman, San Francisco, 1974.
P. Jordan, and von Neumann, J., On inner products in linear metric space, Ann. of Math. 36(1935), pp. 719-723, https://doi.org/10.2307/1968653
S. Kurepa, On the definition of quadratic form. Publ. de l'Inst. Math. 42 (56) (1987), pp. 35-41.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2015 Journal of Numerical Analysis and Approximation Theory
This work is licensed under a Creative Commons Attribution 4.0 International License.
Open Access. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.