A generalization of James' and Krein's theorems

Authors

  • Sever Silvestru Dragomir Secondary School, Băile Herculane, Romania
Abstract views: 140

Abstract

Not available.

Downloads

References

S. S. Dragomir, Representation of continuous linear funcitonals on smooth reflexive banach spaces, L'Anal. Num. Théor. Approx., 16(1987), pp. 19-28.

S. S. Dragomir, A characterization of best approximation element in real normed spaces (Romanian), Stud. Cerc. Mat., 36(1987), pp. 497-506.

S. S. Dragomir, Orthogonal decomposition theorems in normed linear spaces (Romanian), Stud. Cerc. Mat., 41 (1989), pp. 381-392.

J. R. Giles, Classes of semi-inner-product spaces, Trans. Amer. Math. Soc., 129(1967), pp. 436-446, https://doi.org/10.1090/s0002-9947-1967-0217574-1

R. C. James, Characterization of reflexivity, Studia. Math. 23(1964), pp. 205-216, https://doi.org/10.4064/sm-23-3-205-216

R. C. James, Reflexivity and the supremum of linear functionals, Israel Jour. Math. 13(1972), pp. 298-300, https://doi.org/10.1007/bf02762803

P. L. Papini, A remark on semi-inner products over Banach spaces (Italian), Bool. Un. Mat. Ital., 6(1969), pp. 686-689.

I. Singer, Best Approximation in Normed Linear Spaces by Elements of Linear Stubspaces (Romanian), Bucharest, Ed. Academiei, 1967.

Downloads

Published

1990-08-01

Issue

Section

Articles

How to Cite

Dragomir, S. S. (1990). A generalization of James’ and Krein’s theorems. Anal. Numér. Théor. Approx., 19(2), 129-132. https://ictp.acad.ro/jnaat/journal/article/view/1990-vol19-no2-art5