A generalization of James' and Krein's theorems
Abstract
Not available.Downloads
References
S. S. Dragomir, Representation of continuous linear funcitonals on smooth reflexive banach spaces, L'Anal. Num. Théor. Approx., 16(1987), pp. 19-28.
S. S. Dragomir, A characterization of best approximation element in real normed spaces (Romanian), Stud. Cerc. Mat., 36(1987), pp. 497-506.
S. S. Dragomir, Orthogonal decomposition theorems in normed linear spaces (Romanian), Stud. Cerc. Mat., 41 (1989), pp. 381-392.
J. R. Giles, Classes of semi-inner-product spaces, Trans. Amer. Math. Soc., 129(1967), pp. 436-446, https://doi.org/10.1090/s0002-9947-1967-0217574-1
R. C. James, Characterization of reflexivity, Studia. Math. 23(1964), pp. 205-216, https://doi.org/10.4064/sm-23-3-205-216
R. C. James, Reflexivity and the supremum of linear functionals, Israel Jour. Math. 13(1972), pp. 298-300, https://doi.org/10.1007/bf02762803
P. L. Papini, A remark on semi-inner products over Banach spaces (Italian), Bool. Un. Mat. Ital., 6(1969), pp. 686-689.
I. Singer, Best Approximation in Normed Linear Spaces by Elements of Linear Stubspaces (Romanian), Bucharest, Ed. Academiei, 1967.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2015 Journal of Numerical Analysis and Approximation Theory
This work is licensed under a Creative Commons Attribution 4.0 International License.
Open Access. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.