A generalization of James' and Krein's theorems

Authors

  • Sever Silvestru Dragomir Secondary School, Băile Herculane, Romania
Abstract views: 133

Abstract

Not available.

Downloads

Download data is not yet available.

References

S. S. Dragomir, Representation of continuous linear funcitonals on smooth reflexive banach spaces, L'Anal. Num. Théor. Approx., 16(1987), pp. 19-28.

S. S. Dragomir, A characterization of best approximation element in real normed spaces (Romanian), Stud. Cerc. Mat., 36(1987), pp. 497-506.

S. S. Dragomir, Orthogonal decomposition theorems in normed linear spaces (Romanian), Stud. Cerc. Mat., 41 (1989), pp. 381-392.

J. R. Giles, Classes of semi-inner-product spaces, Trans. Amer. Math. Soc., 129(1967), pp. 436-446, https://doi.org/10.1090/s0002-9947-1967-0217574-1

R. C. James, Characterization of reflexivity, Studia. Math. 23(1964), pp. 205-216, https://doi.org/10.4064/sm-23-3-205-216

R. C. James, Reflexivity and the supremum of linear functionals, Israel Jour. Math. 13(1972), pp. 298-300, https://doi.org/10.1007/bf02762803

P. L. Papini, A remark on semi-inner products over Banach spaces (Italian), Bool. Un. Mat. Ital., 6(1969), pp. 686-689.

I. Singer, Best Approximation in Normed Linear Spaces by Elements of Linear Stubspaces (Romanian), Bucharest, Ed. Academiei, 1967.

Downloads

Published

1990-08-01

How to Cite

Dragomir, S. S. (1990). A generalization of James’ and Krein’s theorems. Anal. Numér. Théor. Approx., 19(2), 129–132. Retrieved from https://ictp.acad.ro/jnaat/journal/article/view/1990-vol19-no2-art5

Issue

Section

Articles