Method for solving the periodic problem for integro-differential equations

Authors

  • S. G. Hristova University of Plodviv, Bulgaria
  • D. D. Bainov University of Plodviv, Bulgaria
Abstract views: 131

Abstract

Not available.

Downloads

References

S. R. Bernfeld, V. Lakshmikantham, Linear monotone method for nonlinear boundary value problems, Rocky mountain J., 12(1982), pp. 807-815, https://doi.org/10.1216/rmj-1982-12-4-807

K. Deimling, V. Kakshmikantham, Quasisolutions and their role in the qualitative theory of differential equations, Nonlinear Anal., 4 (1980), pp. 657-663.

Du S. W., Lakshmikantham, V., Monotone iterative technique for differential equaitons in Banach space, J. Math. Anal. Appl., 87 (1982), pp. 454-459, https://doi.org/10.1016/0022-247x(82)90134-2

V. Lakshmikantham, Existence and monotone method for periodic solutions of first order differential equations, J. Math. Anal. Appl., 91, (1983), pp. 237-243, https://doi.org/10.1016/0022-247x(83)90102-6

V. Lakshmikantham, Leela, S., Remarks on first and second order periodic boundary value problems, Nonlinear Anal., 8 (1984), pp. 281-287, https://doi.org/10.1016/0362-546x(84)90050-6

V. Lakshmikantham, Vatsala, A. S., Quasi-solutions and monotone method for systems of nonlinear boundary value problems, J. Math. Anal. Appl., 79 (1981), pp. 38-47, https://doi.org/10.1016/0022-247x(81)90006-8

V. Lakshmikantham, S. Leela, M. N. Oguztorelli, Quasi-solutions, vector Lyapunov functions and monotone method, IEEE Trans. on Autom. Control, 26 (1981).

Downloads

Published

1990-08-01

Issue

Section

Articles

How to Cite

Hristova, S. G., & Bainov, D. D. (1990). Method for solving the periodic problem for integro-differential equations. Anal. Numér. Théor. Approx., 19(2), 137-142. https://ictp.acad.ro/jnaat/journal/article/view/1990-vol19-no2-art7