Some remarks on means

Authors

  • Gh. Toader Polytechnic Institute Cluj-Napoca, Romania
Abstract views: 145

Abstract

Not available.

Downloads

Download data is not yet available.

References

Allasia, G., Su una classe di algoritmi iterativi bidimensionali, Rend. Sem. Mat. Univ Torino, 29, (1969-70), 269-296.

Allasia, G., Una generalizzazione della disugualianza di Liapounoff, Rend. Sem. Mat.Univ. Politech. Torino, 33 (1974-75), 213-222.

Alzer, H., Ungleichungen für Mittelwerte, Arch. Math. 47 (1986), 422-426, https://doi.org/10.1007/bf01189983

Alzer, H., Two inequalities for means, C.R. Math. Rep. Acad. Sci. Canada, IX (1987), 11-16.

Andreoli, G., Medie e loro processi iterativi, Giornale Matem. Battaglini, (5), 85 (1957), 52-79.

Bauer, H., A class of means and related inequalities, manuscripta Math., 55 (1986), 199-212, https://doi.org/10.1007/bf01168685

Borwein, J.M., Borwein, P.R., The way of all means, Amer. Math. Monthly, 94 (1987), 519-522, https://doi.org/10.2307/2322842

Brenneer, J.L., Mays, M.E., Some reproducing identities for families of mean values, Aequat. Math., 33 (1987), 106-113, https://doi.org/10.1007/bf01836156

Bullen, P.S., Mitrinović, D.S., Vasić, P.M., Means and their inequalities, D. Reidel Publ. Comp., Dordrecht, 1988, https://doi.org/10.1007/978-94-017-2226-1

Burrows, B.L., Talbot, R.F., Wchich mean do you mean?, Int. J. Math. Educ.Sci. Technol., 17 (1986), 275-284, https://doi.org/10.1080/0020739860170303

Carlson, B.C., Algorithms involving arithmetic and geometric means, Amer. Math. Monthly, 78 (1971), 496-505, https://doi.org/10.1080/00029890.1971.11992791

Carlson, B.C., The logarithmic mean, Amer. Math. Monthly, 79 (1972), 615-618, https://doi.org/10.1080/00029890.1972.11993095

Carlson, B.C., Gustafson, J.L., Total positivity of mean values and hypergeomtric functions, SIAM J. Math. Anal., 14 (1983), 389-395, https://doi.org/10.1137/0514030

Foster, D.M.E., Phillips, G.M., A generalization of the Archimedean double sequence, J. Math. Anal. Appl. 101 (1984), 575-581, https://doi.org/10.1016/0022-247x(84)90121-5

Foster, D.M.E., Phillips, G.M., The arithmetic-harmonic meanc Math. Comp.,42 (1984), 183-191, https://doi.org/10.1090/s0025-5718-1984-0725993-3

Foster, D.M., General compound means, Res. Notes Math., 133 (1985), 56-65.

Foster, D.M.E., Phillips, G.M., Double mean processes, J The Institute of Math. and its Appl., 22 (1986), 127-173.

Hardy, G.H., Littlewood, J.E., Polya, G., Inequalities,Cambridge, 1934.

Lagrange, J.-L., Sur une nouvbelle methode de calcul integral, Mem. l'Acad. Roy. Sci. turin., 2 (1784-1785), ceuvres, t. 2, Paris, 1868.

Leach, E.B., Sholander, M.C., Extended mean values II, J. Math. Anal. Appl., 92 (1983), 207-223, https://doi.org/10.1016/0022-247x(83)90280-9

Lin, T.P., The power mean and the logarithmic mea, Amer. Math. Monthly, 81 (1974), 879-883, https://doi.org/10.1080/00029890.1974.11993684

Mays, M.E., Functions which parametrize means, Amer. Math., 90 (1983), 677-683, https://doi.org/10.1080/00029890.1983.11971312

Mitrinović, D.S., Pečarić, J.E., Srednje vrednosti u matematici, Naučna Knjiga, Beograd, 1989.

Moskovitz, D., An alignment chart for various means, Amer. Math. Monthly, 40 (1933), 592-596, https://doi.org/10.2307/2301685

Myrberg, P.J., Sur une géneralisation de la moyenne arithmetique-géométrique de Gauss, C.R. Acad. Sc. Paris, 246 (1958), 3201-3204.

Pietra, G., Di una formula per il calcolo delle medie combinatorie, Attn. Soc. Prog. Sci., 27 (1939), 5, 38-45.

Pittenger, A.O., Inequalities between arithmetic and logarithmic means, Univ. Beograd. Publ. Elektro. Fak., 678-715 (1980), 15-18.

Sándor, J., Toader, Gh., On some exponential means, "Babeş-Bolyai" Univ.Preprint 7 (1990), (35-40).

Schoenberg, I.J., Mathematical time exposures, The Math. Assoc. of America, 1982.

Stolarsky, K.B., Generalizations of the logarithmic mean, Math. Magazine, 48 (1975), 87-92, https://doi.org/10.1080/0025570x.1975.11976447

Toader, Gh., Complex generalized means, First Nat. Symp. "Realizări şi perspective în domeniul traductoarelor", Cluj, 1986, III, 46-49.

Toader, Gh., Generalized means and double sequences, Studia Univ. "Babeş-Bolyai", Math. 32 (1987), 3, 77-80.

Toader, Gh., On the rate of convergence of double sequences, "Babeş-Bolyai" Univ., Preprint 9 (1987), 123-128.

Toader, Gh., Generalized double sequences, Anal.Numér. Theor. Approx.16 (1987), 81-85.

Toader, Gh., Mean value theorems and means, Nat. Conf. Appl. Math. Mechan., Cluj-Napoca, 1988, 225-230.

Toader, Gh., An exponential mean, "Victor-Babeş" Univ., Preprint 7 (1988), 51-54.

Toader, Gh., A generalization of geometric and harmonic meanc, "Babeş-Bolyai", Univ., Preprint 7 (1989), 21-28.

Toader, Gh., On bidimensional iteration algorithms, "Babeş-Bolyai" Univ., Preprint 6 (1990), (to appear).

Toader, Gh., On the convergence of double sequences, Second Nat. Conf. Appl. Math. Mech., Cluj-Napoca, 1990, (to appear).

Tricomi, F.G., Sulle combinazioni lineari delle tre classiche medie, Atti Acc. Sci. Torino, 104 (1970), 557-572.

Tricomi, F.G., Sugli algoritmi iterativi nell'analisi numerica, Convegno Intern., Accad. Nat.Lincei, CCLXXII (1975), 105-117.

Wimp, J., Multidimensional iteration algorithms, Rend. Sem. Mat. Univ. Politec. Torino Fasc. Spec. 1985, 319-334.

Downloads

Published

1991-08-01

How to Cite

Toader, G. (1991). Some remarks on means. Anal. Numér. Théor. Approx., 20(1), 97–109. Retrieved from https://ictp.acad.ro/jnaat/journal/article/view/1991-vol20-nos1-2-art13

Issue

Section

Articles