Approximation of continuous set-valued functions in Fréchet spaces I

Authors

  • Michele Campiti Universita degli Bari Study di Bari, Italy
Abstract views: 135

Abstract

Not available.

Downloads

Download data is not yet available.

References

Aubin, J.P. and Cellina, A., Differential inclusions, Grundlehren der mathematischen Wissenschaften, 264, Springer-Verlag, 1984.

Campiti, M., A Korovkin-type theorem for set-valued Hausdorff continuous functions Le Mathematiche, Vol.XLII (1987), Fasc. I-II, 29-35.

Keimel, K. and Roth, W., A Korovkin type approixmation theorem for set-valued functions, Proc. Amer. Math. Soc.,104, (1988), 819-823, https://doi.org/10.1090/s0002-9939-1988-0964863-8

Keimel, K. and Roth, W., Ordered cones and approximation, preprint Technische Hochschule Darmstadt, part. I, II, III, IV, 1988-89.

Michael, E., Continuous selections, I, Ann. Math., 63, (1956), 2, 361-382, https://doi.org/10.2307/1969615

Vitale, R.S., Approximation of convex set-valued functions, J. Approx. theory 26 (1979) 4, 301-316, https://doi.org/10.1016/0021-9045(79)90067-4

Downloads

Published

1991-08-01

How to Cite

Campiti, M. (1991). Approximation of continuous set-valued functions in Fréchet spaces I. Anal. Numér. Théor. Approx., 20(1), 15–23. Retrieved from https://ictp.acad.ro/jnaat/journal/article/view/1991-vol20-nos1-2-art3

Issue

Section

Articles