Approximation of continuous set-valued functions in Fréchet spaces II

Authors

  • Michele Campiti Universita degli Study di Bari, Italy
Abstract views: 131

Abstract

Not available.

Downloads

Download data is not yet available.

References

Berens, H., and Lorentz, G. G., Geometric theory of Korovkin sets, J. Approx. theory, 15 (1975), no.3, pp. 161-189, https://doi.org/10.1016/0021-9045(75)90100-8

Campiti, M., Approximation of continuous set-valued functions in Fréchet spaces, I, L'Analyse numérique et la théorie de l'approximation, 20 (1991), 1-2, pp. 15-23.

Ferguson, L. B. O., and Rusk, M. D., Korovkin sets for an operator on a space of continuous functions, Pacific J. Math., 65 (1976), no. 2, pp. 337-345, https://doi.org/10.2140/pjm.1976.65.337

Keimel, K., and roth, W., A Korovkin type approximation theorem for set-valued fucntions, Proc. Amer. Math. Soc., 104 (1988), pp. 819-823, https://doi.org/10.1090/s0002-9939-1988-0964863-8

Keimel, K., and Roth, W., Ordered cones and approximation, preprint Technische Hochschule Darmstadt, part. I, II, III, IV, 1988-89.

Michale, E., Continuous selections. I, Ann. Math., 63, (1956), 2, pp. 361-382, https://doi.org/10.2307/1969615

Prolla, J. B., Approximation of continuous convex-cone-valued fucntions by monotone operators, preprint Universidade Estadual de Campinas, Brasil, no. 27 (1990).

Vitale, R. S., Approxiamtion of convex set-valued functions, J. Approx. Theory, 26 (1979), no. 4, pp. 301-316, https://doi.org/10.1016/0021-9045(79)90067-4

Downloads

Published

1991-08-01

How to Cite

Campiti, M. (1991). Approximation of continuous set-valued functions in Fréchet spaces II. Anal. Numér. Théor. Approx., 20(1), 25–38. Retrieved from https://ictp.acad.ro/jnaat/journal/article/view/1991-vol20-nos1-2-art4

Issue

Section

Articles