Approximation of continuous set-valued functions in Fréchet spaces II
Abstract
Not available.Downloads
References
Berens, H., and Lorentz, G. G., Geometric theory of Korovkin sets, J. Approx. theory, 15 (1975), no.3, pp. 161-189, https://doi.org/10.1016/0021-9045(75)90100-8
Campiti, M., Approximation of continuous set-valued functions in Fréchet spaces, I, L'Analyse numérique et la théorie de l'approximation, 20 (1991), 1-2, pp. 15-23.
Ferguson, L. B. O., and Rusk, M. D., Korovkin sets for an operator on a space of continuous functions, Pacific J. Math., 65 (1976), no. 2, pp. 337-345, https://doi.org/10.2140/pjm.1976.65.337
Keimel, K., and roth, W., A Korovkin type approximation theorem for set-valued fucntions, Proc. Amer. Math. Soc., 104 (1988), pp. 819-823, https://doi.org/10.1090/s0002-9939-1988-0964863-8
Keimel, K., and Roth, W., Ordered cones and approximation, preprint Technische Hochschule Darmstadt, part. I, II, III, IV, 1988-89.
Michale, E., Continuous selections. I, Ann. Math., 63, (1956), 2, pp. 361-382, https://doi.org/10.2307/1969615
Prolla, J. B., Approximation of continuous convex-cone-valued fucntions by monotone operators, preprint Universidade Estadual de Campinas, Brasil, no. 27 (1990).
Vitale, R. S., Approxiamtion of convex set-valued functions, J. Approx. Theory, 26 (1979), no. 4, pp. 301-316, https://doi.org/10.1016/0021-9045(79)90067-4
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2015 Journal of Numerical Analysis and Approximation Theory
This work is licensed under a Creative Commons Attribution 4.0 International License.
Open Access. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.