Approximation of continuous set-valued functions in Fréchet spaces II

Authors

  • Michele Campiti Universita degli Study di Bari, Italy
Abstract views: 136

Abstract

Not available.

Downloads

References

Berens, H., and Lorentz, G. G., Geometric theory of Korovkin sets, J. Approx. theory, 15 (1975), no.3, pp. 161-189, https://doi.org/10.1016/0021-9045(75)90100-8

Campiti, M., Approximation of continuous set-valued functions in Fréchet spaces, I, L'Analyse numérique et la théorie de l'approximation, 20 (1991), 1-2, pp. 15-23.

Ferguson, L. B. O., and Rusk, M. D., Korovkin sets for an operator on a space of continuous functions, Pacific J. Math., 65 (1976), no. 2, pp. 337-345, https://doi.org/10.2140/pjm.1976.65.337

Keimel, K., and roth, W., A Korovkin type approximation theorem for set-valued fucntions, Proc. Amer. Math. Soc., 104 (1988), pp. 819-823, https://doi.org/10.1090/s0002-9939-1988-0964863-8

Keimel, K., and Roth, W., Ordered cones and approximation, preprint Technische Hochschule Darmstadt, part. I, II, III, IV, 1988-89.

Michale, E., Continuous selections. I, Ann. Math., 63, (1956), 2, pp. 361-382, https://doi.org/10.2307/1969615

Prolla, J. B., Approximation of continuous convex-cone-valued fucntions by monotone operators, preprint Universidade Estadual de Campinas, Brasil, no. 27 (1990).

Vitale, R. S., Approxiamtion of convex set-valued functions, J. Approx. Theory, 26 (1979), no. 4, pp. 301-316, https://doi.org/10.1016/0021-9045(79)90067-4

Downloads

Published

1991-08-01

Issue

Section

Articles

How to Cite

Campiti, M. (1991). Approximation of continuous set-valued functions in Fréchet spaces II. Anal. Numér. Théor. Approx., 20(1), 25-38. https://ictp.acad.ro/jnaat/journal/article/view/1991-vol20-nos1-2-art4