Quadrature rules obtained by means of interpolatory linear positive operators
Abstract
Not available.Downloads
References
F. Locher, On Hermite-Fejér interpolation al Jacobi zeros, J. Approx. Theory 44 (1985), pp. 154-166, https://doi.org/10.1016/0021-9045(85)90077-2
T. Popoviciu, Sur le reste dans certaines formules lineaires d'approximation de l'analyse, Mathematica, 1 (24), (1959), pp. 95-142.
D. D. Stancu, On the Gaussian quadrature formulas, Studia Univ. Bebeş-Bolyai, Cluj, 1 (1958), pp. 71-84.
D. D. Stancu, On a generalization of the Bernstein polynomials, Studia Univ. Babeş-Bolyai, Cluj, 14 (1969), pp. 31-45.
D. D. Stancu, Quadrature formulas constructed by using certain linear positive operators. ln: Numerical Integration, (Proc. Conf. Math. Res. Inst. Oberwolfach, 1981; ed. G. Hämmerlin; ISNM 57), Basel-Boston-Stuttgart: Brikhäuser, 1982, pp. 241-251,https://doi.org/10.1007/978-3-0348-6308-7_23
D. D. Stancu, Approximation of fucntions by means of a new generalized Bernstein operator, Calcolo 15 (1983), pp. 211-229, https://doi.org/10.1007/bf02575593
J. Szabados, P. Vértesi, Interpolation of Functions, World Scientific, Publ. Comp. Singapore, New Jersey, London, Hong Kong, 1990.
G. Szegö, Orthogonal polynomials, Amer. Math. Soc. Coll. Publ., vol. 23, Providence, R.I. 1939.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2015 Journal of Numerical Analysis and Approximation Theory
This work is licensed under a Creative Commons Attribution 4.0 International License.
Open Access. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.