Quadrature rules obtained by means of interpolatory linear positive operators

Authors

  • Dimitrie D. Stancu "Babeş-Bolyai" University, Cluj-Napoca, Romania
  • Felicia Stancu "Babeş-Bolyai" University, Cluj-Napoca, Romania
Abstract views: 186

Abstract

Not available.

Downloads

Download data is not yet available.

References

F. Locher, On Hermite-Fejér interpolation al Jacobi zeros, J. Approx. Theory 44 (1985), pp. 154-166, https://doi.org/10.1016/0021-9045(85)90077-2

T. Popoviciu, Sur le reste dans certaines formules lineaires d'approximation de l'analyse, Mathematica, 1 (24), (1959), pp. 95-142.

D. D. Stancu, On the Gaussian quadrature formulas, Studia Univ. Bebeş-Bolyai, Cluj, 1 (1958), pp. 71-84.

D. D. Stancu, On a generalization of the Bernstein polynomials, Studia Univ. Babeş-Bolyai, Cluj, 14 (1969), pp. 31-45.

D. D. Stancu, Quadrature formulas constructed by using certain linear positive operators. ln: Numerical Integration, (Proc. Conf. Math. Res. Inst. Oberwolfach, 1981; ed. G. Hämmerlin; ISNM 57), Basel-Boston-Stuttgart: Brikhäuser, 1982, pp. 241-251,https://doi.org/10.1007/978-3-0348-6308-7_23

D. D. Stancu, Approximation of fucntions by means of a new generalized Bernstein operator, Calcolo 15 (1983), pp. 211-229, https://doi.org/10.1007/bf02575593

J. Szabados, P. Vértesi, Interpolation of Functions, World Scientific, Publ. Comp. Singapore, New Jersey, London, Hong Kong, 1990.

G. Szegö, Orthogonal polynomials, Amer. Math. Soc. Coll. Publ., vol. 23, Providence, R.I. 1939.

Downloads

Published

1992-02-01

How to Cite

Stancu, D. D., & Stancu, F. (1992). Quadrature rules obtained by means of interpolatory linear positive operators. Rev. Anal. Numér. Théor. Approx., 21(1), 75–81. Retrieved from https://ictp.acad.ro/jnaat/journal/article/view/1992-vol21-no1-art11

Issue

Section

Articles