Wavelet transform, Toeplitz type operators and decomposition of functions on the upper half-plane

Authors

  • Ding-Xuan Zhou Zhejiang University, China

Keywords:

continuous wavelet transform, function spaces, Toeplitz type operators, Schatten-Von Neumann class, Besov spaces

Abstract

In this paper we consider the decomposition of functions on the upper half-plane into orthogonal subspaces which are isometric to \(L^{2}(\mathbb{R})\) by continuous wavelet transforms. A necessary and sufficient condition for such a decomposition is given. From such a decomposition by general Laguerre polynomials, we define a series of Toeplitz type operators and study the Schatten-Von Neumann classes of these operators.

Downloads

Published

1992-02-01

How to Cite

Zhou, D.-X. (1992). Wavelet transform, Toeplitz type operators and decomposition of functions on the upper half-plane. Rev. Anal. Numér. ThéOr. Approx., 21(1), 89-100. Retrieved from https://ictp.acad.ro/jnaat/journal/article/view/1992-vol21-no1-art13

Issue

Section

Articles