A mathematical model of competition between two populations, with disjoint starting domains

Authors

  • Adolf Haimovici Iaşi, Romania
Abstract views: 191

Abstract

Not available.

Downloads

References

Gabriele di Blasio, An initial boundary value problem for age dependent population diffusion. SIAM J. of Appl. Math. 35 (1979), pp. 593-619, https://doi.org/10.1137/0135049

Friedman A., Partial Differential Equations of Parabolic Type Prentice Hall, 1964.

M. E. Gurtin, R. C. Mc. Camy, Non-linear age dependent population dynamics. Arch. Rational Mechanics Anal. 54 (1974), pp. 281, https://doi.org/10.1007/bf00250793

A. Haimovici, On an ecological system, dependeing on ages and involving diffusion, Ricerche di Matematice, XXXIV 1, 1985.

A. Haimovici, On a Volterra struggle for life mathematical model, involving migration, Bull. Math. de la Soc. Math. de la R.S.Roumanie, 28 (76), 4 (1984).

F. Hoppenstaedt, Mathematical Theories of Populations Demographie, Genetics and Epidemics, Regional Conference Series in applied Mathematics, 80 SIAM 1975.

O. Ladyjenskaja, B.A. Solonnikov and N. N. Ural'ceva, Lineinie i kvazilineinie uravnenia parabolicescogo tipa Nauka, Moskva 1967.

A. Lotka, The stability of the normal age distribution, Proc. Nat. Sciences (1922), pp. 339-345.

V. Volterra, Leçons sur la theorie mathematique de la lutte pour la vie, Paris, Gauthier-Villars, 1931.

G. F. Webb, Theory of nonlinear age dependent population dynamics, Marcel Dekker Inc., New York, 1985.

Downloads

Published

1992-02-01

Issue

Section

Articles

How to Cite

Haimovici, A. (1992). A mathematical model of competition between two populations, with disjoint starting domains. Rev. Anal. Numér. Théor. Approx., 21(1), 43-51. https://ictp.acad.ro/jnaat/journal/article/view/1992-vol21-no1-art6