A mathematical model of competition between two populations, with disjoint starting domains
Abstract
Not available.Downloads
References
Gabriele di Blasio, An initial boundary value problem for age dependent population diffusion. SIAM J. of Appl. Math. 35 (1979), pp. 593-619, https://doi.org/10.1137/0135049
Friedman A., Partial Differential Equations of Parabolic Type Prentice Hall, 1964.
M. E. Gurtin, R. C. Mc. Camy, Non-linear age dependent population dynamics. Arch. Rational Mechanics Anal. 54 (1974), pp. 281, https://doi.org/10.1007/bf00250793
A. Haimovici, On an ecological system, dependeing on ages and involving diffusion, Ricerche di Matematice, XXXIV 1, 1985.
A. Haimovici, On a Volterra struggle for life mathematical model, involving migration, Bull. Math. de la Soc. Math. de la R.S.Roumanie, 28 (76), 4 (1984).
F. Hoppenstaedt, Mathematical Theories of Populations Demographie, Genetics and Epidemics, Regional Conference Series in applied Mathematics, 80 SIAM 1975.
O. Ladyjenskaja, B.A. Solonnikov and N. N. Ural'ceva, Lineinie i kvazilineinie uravnenia parabolicescogo tipa Nauka, Moskva 1967.
A. Lotka, The stability of the normal age distribution, Proc. Nat. Sciences (1922), pp. 339-345.
V. Volterra, Leçons sur la theorie mathematique de la lutte pour la vie, Paris, Gauthier-Villars, 1931.
G. F. Webb, Theory of nonlinear age dependent population dynamics, Marcel Dekker Inc., New York, 1985.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2015 Journal of Numerical Analysis and Approximation Theory
This work is licensed under a Creative Commons Attribution 4.0 International License.
Open Access. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.