A mathematical model of competition between two populations, with disjoint starting domains

Authors

  • Adolf Haimovici Iaşi, Romania
Abstract views: 186

Abstract

Not available.

Downloads

Download data is not yet available.

References

Gabriele di Blasio, An initial boundary value problem for age dependent population diffusion. SIAM J. of Appl. Math. 35 (1979), pp. 593-619, https://doi.org/10.1137/0135049

Friedman A., Partial Differential Equations of Parabolic Type Prentice Hall, 1964.

M. E. Gurtin, R. C. Mc. Camy, Non-linear age dependent population dynamics. Arch. Rational Mechanics Anal. 54 (1974), pp. 281, https://doi.org/10.1007/bf00250793

A. Haimovici, On an ecological system, dependeing on ages and involving diffusion, Ricerche di Matematice, XXXIV 1, 1985.

A. Haimovici, On a Volterra struggle for life mathematical model, involving migration, Bull. Math. de la Soc. Math. de la R.S.Roumanie, 28 (76), 4 (1984).

F. Hoppenstaedt, Mathematical Theories of Populations Demographie, Genetics and Epidemics, Regional Conference Series in applied Mathematics, 80 SIAM 1975.

O. Ladyjenskaja, B.A. Solonnikov and N. N. Ural'ceva, Lineinie i kvazilineinie uravnenia parabolicescogo tipa Nauka, Moskva 1967.

A. Lotka, The stability of the normal age distribution, Proc. Nat. Sciences (1922), pp. 339-345.

V. Volterra, Leçons sur la theorie mathematique de la lutte pour la vie, Paris, Gauthier-Villars, 1931.

G. F. Webb, Theory of nonlinear age dependent population dynamics, Marcel Dekker Inc., New York, 1985.

Downloads

Published

1992-02-01

How to Cite

Haimovici, A. (1992). A mathematical model of competition between two populations, with disjoint starting domains. Rev. Anal. Numér. Théor. Approx., 21(1), 43–51. Retrieved from https://ictp.acad.ro/jnaat/journal/article/view/1992-vol21-no1-art6

Issue

Section

Articles