Sur une généralisation de la méthode de Steffensen

On a generalization of the Steffensen method

Authors

  • Ion Păvăloiu Tiberiu Popoviciu, Institute of Numerical Analysis, Romanian Academy, Romania
Abstract views: 233

Abstract

We extend the Steffensen method for solving the equation \(f\left( x\right)=0\) to the setting of the Banach spaces, \(f:X\rightarrow X,\ X\) a Banach space. Considering another equation \(x-g\left( x\right) =0\), equivalent to the above one and assuming certain conditions on the first and second order divided differences of \(f\) we obtain a semilocal convergence result for the method \[x_{n+1}=x_{n}-\left[ x_{n},g\left( x_{n}\right) ;f\right]^{-1}f\left( x_{n}\right) ,~x_{0}\in X.\]

Downloads

Download data is not yet available.

References

Balasz M. şi Goldner G., Diferenţe divizate în spaţii Banach şi unele aplicaţii ale lor. St. cerc. mat. 21, 7, (1969), pp.985-995.

Diaconu Adrian, Interpolation dans les espaces arbitraits. Méthodes itératives pour le résolution des équations opérationnelles obtenus par ;l'interpolations inverse. III Research Seminar of Functional Analysis and Numerical Methodes, Preprint Nr.1 1985, pp.21-70.

Lică Dionis, Analiza funcţională şi rezolvarea aproximativă a ecuaţiilor neliniare. Editura Ştiinţifică, Kişinău, 1975.

Păvăloiu I. Sur la méthode de Steffensen pour la résolution des équations opérationnelles non linéaires. Revue Roumaine de Mathematiques pures et appliquées. XIII, 1, (1968), pp.149/158.

Păvăloiu I. Introducere în teoria aproximării soluţiilor ecuaţiilor. Ed. Dacia, Cluj-Napoca, 1976.

Ul'm, S., Ob obobscennîh razdelennîh raznostiah I, Izv. Acad. Nauk. Estenoskoi S.S.R. 16, 1, (1967), pp.13-26.

Ul'm, S. Ob obobscennîh razdelennîh raznostiah II, Izv. Acad. Nauk. Estenoskoi S. S.R. 16, 2, (1967), pp.146-155

Downloads

Published

1992-02-01

How to Cite

Păvăloiu, I. (1992). Sur une généralisation de la méthode de Steffensen: On a generalization of the Steffensen method. Rev. Anal. Numér. Théor. Approx., 21(1), 59–65. Retrieved from https://ictp.acad.ro/jnaat/journal/article/view/1992-vol21-no1-art8

Issue

Section

Articles