Improved estimates on simultaneous approximation by Bernstein operators
Keywords:
Simultaneous approximation, Bernstein operators, p-metric spaceAbstract
A thorough discussion concerning estimates for simultaneous approximation by almost convex operators is given. Bernstein operators are discussed in detail. Special attention is paid to the history of the subject.
Downloads
References
F. Altomare, I. Raşa, Approximation by positive operators in the space Cp([a,b]), Anal. Numér. Théor. Approx. 18 (1989), pp. 1-11.
G.A. Anastassiou, A Study of Positive Linear Operators by the Method of Moments, Ph. D. Dissertation, University, of Rochester, 1984.
G.A. Anastassiou, A Study of positive linear operators by the method of moments, one-dimensional case, J. Approx. Theory 45 (1985), pp. 247-270, https://doi.org/10.1016/0021-9045(85)90049-8
C. Badea, On a Korovkin type theorem for simultaneous approximation, J., Approx. Theory 62 (1990), pp. 223-234, https://doi.org/10.1016/0021-9045(90)90035-o
I. Badea, Aproximarea funcţiilor vectoriale de una şi două variabile prin polinoame Bernstein, Ph. D. Dissertation, Universitz of Craiova, 1974 (in Romanian).
E. Blaswich, Zur Berechnung einiger Konstanten bei der Approximation mit Bernstein-Polynomen, Staatsexamensarbeit, University of Duisburg 1985.
R. A. De Vore, The Approximation of Continuous Functions by Positive Linear Operators, Berlin-Heidelberg-New York: Springer 1972.
H. H. Gonska, On approximation of continously differentiable functions by positive linear operators, Bull. Austral. Math. Soc. 27 (1983), pp. 73-81, https://doi.org/10.1017/s0004972700011497
H. H. Gonska, Quantitative Korovkin-type theorems on simultaneous approximation, Math. Z. 186 (1984), pp. 419-433, https://doi.org/10.1007/bf01174895
H. H. Gonska, On approximation by linear operators: Improved estimates, Anal. Numér. Théor. Approx. 14 (1985), pp. 7-32.
H. H. Gonska, J. Meier, Abibliography on approximation of functions by Bernstein-type operators (1955-1982) in: Approximation Theory IV (Proc. Int. Sympos. College Station 1983; ed. by C.K. Chiu et al.), pp. 739-783. New York: Acad. Press 1983.
H. H. Gonska, J. Meier-Gonska, A bibliography on approximation of functions by Bernstein-type operators (Supplement 1986), in: Approximation TYheory V (Proc. Int. Sympos. College Station 1986; ed. by C.K. Chui et al.), pp. 621-654. New York; Acad. Press 1986.
H. H. Gonska, J. Meier, On approximation by Bernstein-type operators: Best constants, Studia Sc. Math. Hungar. 22 (1987), 287-297.
H.B. Knoop, P. Pottinger, Ein Satz vom Korokvin-Typ für Ck-Räume, Math. Z. 148 (1976), pp. 23-32, https://doi.org/10.1007/bf01187866
H. B. Knoop, P. Pottinger, On simultaneous approximation by certain linear positive operators, Arch. Math. (Basel) 48 (1987), pp. 511-520,https://doi.org/10.1007/bf01190358
N.P. Korneičuk, On an exact constant in Jackson's inequality for periodic continuous functions (Russian), Mat. Zametki 23 (2) (1982), pp. 669-674.
Li Ven'Tin, On the order of approximation by Bernstein polynomials (Chinese), Progr. Mat. Shuxe jinzhan 4 (1958), pp. 567-568.
G.G. Lorentz, Zur Theorie der Polynome von S. Bernstein, Math. Sb. (N.S.) 2 (1937), pp. 543-556.
G. G. Lorentz, Bernstein Polynomials (2nd ed.), New York: Chelsea 1986.
R. Martini, On the approximation of functions together with their derivatives by certain linear positive operators, Indag. Math. 31 (1969), pp. 473-481.
J. Meier, Zur Verallgemeinerung eines Satzes von Censor und De Vore, Facta Univ.Niš. Ser. Math. Inform. 1 (1986), pp. 45-52.
N. I. Merlina, On the question of approximation of differentiable functions by linear approximation methods (Russian), Manuscript, Tschuwaschskij Gos. Univ., Tscheboksary 1977 (dep. at VINITI under no.514-78 Dep.). RŽM 1978, 7b140 DEP.
G. Moldovan, Asupra aproximării funcţiilor continue prin polinoame Bernstein, Studia Univ.Babeş-Bolyai Ser. Math.-Phys. 11 (1966), pp. 63-71.
B. Mond, R. Vasudevan, On approximation by linear positive operators, J. Approx. Theory 30 (1980), pp. 334-336, https://doi.org/10.1016/0021-9045(80)90035-0
J. Nagel, Kantorovič operators of second order, Monatsh. Math. 95 (1983), pp. 33-44, https://doi.org/10.1007/bf01301146
R. Păltănea, Improved estimates in apprximation by Bernstein polynomials, in Itinerant Seminar on Functional Equations, Approximation and Convexity (Cluj-Napoca 1988), pp. 261-268. Preprint 88-6, Univ. Babeş-Bolyai, Cluj-Napoca, 1988.
T. Popoviciu, Despre cea mai buna aproximaţie a funcţiilor continue prin polinoame, Cluj: Inst. Arte Grafice Ardealul 1937 (in Romanian).
A. Sahai, G. Prasad, Sharp esteimates of approximation by some positive linear operators, Bull. Austral. Math. Soc. 29 (1984), pp. 13-18, https://doi.org/10.1017/s0004972700021225
F. Schurer, F.W. Steutel, The degree of local approximation of functions in C¹[0,1] by Bernstein polynomials, J. Approx. Theory 19 (1977), pp. 69-82, https://doi.org/10.1016/0021-9045(77)90030-2
P. C. Sikkema, Der Wert einiger Konmstanten in der Theorie der Approximation mit Bernstein-Polynomen, Numer. Math. 3 (1961), pp. 107-116,https://doi.org/10.1007/bf01386008
S. P. Singh, On the degree of approximation by Baskakov-type operators. Pure Appl. Math. Sci. 20 (1-2) (1984), pp. 81-86.
S. P. Singh, O. P. Varshney, On positive linear operators, J. Orissa Math. Soc. 1 (1982), no. 2, pp. 51-56.
S. P. Singh, O. P. Varshney; G. Prasad, On convergence of the derivatives of Baskakov-type operators, Boll. Un. Mat. Ital. (6) 2-A (1983), pp. 289-296.
D. D. Stancu, Sur l'approximation des dérivées des fonctions par les dérivées correspondantes de certaines polynômes de type Bernstein, Mathematica (Cluj), 2 (25), (1960), pp. 335-348.
D. D. Stnacu, Generalizations of an inequality of G. G. Lorentz, An. Ştiinţ. Univ. "Al. I. Cuza" Iaşi (N.S.) Secţ. I. Mat. Fiz. Chim. 9 (1963), pp. 49-58.
E. L. Stark Bernstein-Polynome, 1912-1955, in: Functional Analysis and Approximation (Proc. Conf. Math. Res. Inst. Oberwolfach 1980; ed. by P. L. Butzer, B. Sz.-Nagy and E. Görlich), pp. 443-461. Basel: Birkhäuser 1981, https://doi.org/10.1007/978-3-0348-9369-5_40
O. P. Varshney, S.P. Singh, On degree of approximation by positive linear operators, Rend. Math. (7) 2 (1982), pp. 219-225.
S. Wigert, Sur l'approximation par polynômes des fonctions continues, Ark. Math. Astr. Fys. 22 B (1932), pp. 1-4.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2015 Journal of Numerical Analysis and Approximation Theory
This work is licensed under a Creative Commons Attribution 4.0 International License.
Open Access. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.