On Gonska's problem concerning approximation by algebraic polynomials
Abstract
Not available.Downloads
References
Cao, J.D. and Gonska, H.H., Approximation by Boolean Sums of Positive Linear Operators III, Estimates for some Numerical Approximation Schemes, Numer. Funct. Anal. and Optimiz., 10 (7 & 8), 1989.
Bernstein, S., Sur le s polynômes orthogonaux relatifs à un segment fini, Journ. Math.pures et appl., 10 (1931), pp. 219-286.
Gonska, H.H., Quantitative Korovkin Type Theorems on Simultaneous Approximation, Math. Z. 186, (1984), pp. 419-433, https://doi.org/10.1007/bf01174895
Lupaş, A. and Mache, D.H., The Degree of Approximation by a Class of Linear Positive Operators, Preprint Nr.108 (1992), Universität Dortmund.
Mitrinovič, D.S. and Vasič, P.M., Analytic Inequalities, Springer-Verlag, Berlin, Heidelberg, New York, 1970, https://doi.org/10.1007/978-3-642-99970-3
Popoviciu, T., Über die Konnvergenz von Folgen Positiver Operatoren, An. Sti. Univ. Al. I. Cuza" Iaşi (N.S.) 17 (1971), pp. 123-132.
Timan, A.F., Strengthening of Jakson's Theorem on Best Approximation of Continuous Fucntions Given on a Finite Interval of The Real Axis, Dokl, Akad. Hauk SSSR 78 (1951) (Russian), pp. 17-20.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2015 Journal of Numerical Analysis and Approximation Theory
This work is licensed under a Creative Commons Attribution 4.0 International License.
Open Access. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.