Direct numerical spline methods for first-order Fredholm integro-differential equations
Abstract
Not available.Downloads
References
P.M. Anselon and R. H. Moore, Approximate solution of integral and operator equation, J. Math. Anal. Appl. 9 (1964), 268-277, https://doi.org/10.1016/0022-247x(64)90042-3
K. E. Atkinson, A survey of Numerical Methods for the Solution of Fredholm Integral Equations of the Second Kind. SIAM, Philadelphia (1976).
K. E. Atkinson and F. A. Potra, Projection and iterated projection methods for nonlinear integral equations. SIAM J. Numer. Anal. 24, 6 (1987), 1352-1373, https://doi.org/10.1137/0724087
K. E. Atkinson and F. A. Potra, The discrete Galerkin method for nonlinear integral equations. J. of Integral Eqs. and Applications, 1, 1 (1988), 17-54, https://doi.org/10.1216/jie-1988-1-1-17
L. E. Garey and C. J. Gladwin, Direct numerical methods for first-order Fredholm integro-differential equations. Inter. J. Computer Math. 34 (1990), 237-246, https://doi.org/10.1080/00207169008803880
P. Linz, A method for the approximate solution of linear integrodifferential equations. SIAM J. Number. Anal. 11 (1974), 137-144, https://doi.org/10.1137/0711014
G. Micula, Die numerische Losung nichtinearer Differentialgleichungen unter Verwendung non Spline-Funktionen. lect. Notes in Math. 395, Springer-Verlag, 1974, 57-83, https://doi.org/10.1007/bfb0060664
G. Micula, Spline Functions and Applications (Romanian). Ed. Tehnică, Bucharest, (1978).
G. M. Phillips, Analysis of numerical iterative methods for solving integral and integrodifferential equations. Comput. J. 13 (1970), 297-300, https://doi.org/10.1093/comjnl/13.3.297
W. Volk, The numerical solution of linear integro-differential equations by projection methods. J. Int. Eq. 9 (1985), 171-190.
Downloads
Published
Issue
Section
License
Copyright (c) 2015 Journal of Numerical Analysis and Approximation Theory
This work is licensed under a Creative Commons Attribution 4.0 International License.
Open Access. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.