Numerical alternative method scheme for Burgers' equation
Abstract
Not available.Downloads
References
H. Bateman, Some recent researches on the motion of fluids. Mon. Weather Rev. 43, pp. 163-170, 1915, https://doi.org/10.1175/1520-0493(1915)43%3C163:srrotm%3E2.0.co;2
Bujrgers, J.M., A mathematical model illustratin theory of turbulence. Adv. Appl. Mech. 1, pp. 171-199, 1948, https://doi.org/10.1016/s0065-2156(08)70100-5
E. Hopf, The partial differential equaiton ut+uux=uxx, Comm. on Pure and Appl. Math. vol. III, 3, pp. 201-230, 1950, https://doi.org/10.1002/cpa.3160030302
J. Cole, On a quasilinear parabolic equation occurring in aerodynamics. Quart. of applied math., vol. IX, 3, pp. 225-236, 1951, https://doi.org/10.1090/qam/42889
N. Bressan, A., Quarteroni, An implicit/explicit spectral method for Burgers' equations, Calcolo, XXIII, fasc. III, pp. 265-284, 1986, https://doi.org/10.1007/bf02576532
C. Canuto, M.Y. Hussaini, A. Quarteroni, Th. A. Zang, Spectral methods in fluid dynamics Springer Verlag, 1988, https://doi.org/10.1007/978-3-642-84108-8
L. Cesari, Functional analysis and Galerkin's method, Mich. Math. J., 11, 3, 1964.
D. Trif, La méthode de l'alternative et les solutions numériques des équations Ly=Ny, Preprint 7, pp. 70-89, 1984, Univ. of Cluj-Napoca.
Downloads
Published
Issue
Section
License
Copyright (c) 2015 Journal of Numerical Analysis and Approximation Theory
This work is licensed under a Creative Commons Attribution 4.0 International License.
Open Access. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.