Numerical alternative method scheme for Burgers' equation

Authors

  • Titus Petrila "Babeş-Bolyai" University, Cluj-Napoca, Romania
  • Damian Trif "Babeş-Bolyai" University, Cluj-Napoca, Romania
Abstract views: 162

Abstract

Not available.

Downloads

Download data is not yet available.

References

H. Bateman, Some recent researches on the motion of fluids. Mon. Weather Rev. 43, pp. 163-170, 1915, https://doi.org/10.1175/1520-0493(1915)43%3C163:srrotm%3E2.0.co;2

Bujrgers, J.M., A mathematical model illustratin theory of turbulence. Adv. Appl. Mech. 1, pp. 171-199, 1948, https://doi.org/10.1016/s0065-2156(08)70100-5

E. Hopf, The partial differential equaiton ut+uux=uxx, Comm. on Pure and Appl. Math. vol. III, 3, pp. 201-230, 1950, https://doi.org/10.1002/cpa.3160030302

J. Cole, On a quasilinear parabolic equation occurring in aerodynamics. Quart. of applied math., vol. IX, 3, pp. 225-236, 1951, https://doi.org/10.1090/qam/42889

N. Bressan, A., Quarteroni, An implicit/explicit spectral method for Burgers' equations, Calcolo, XXIII, fasc. III, pp. 265-284, 1986, https://doi.org/10.1007/bf02576532

C. Canuto, M.Y. Hussaini, A. Quarteroni, Th. A. Zang, Spectral methods in fluid dynamics Springer Verlag, 1988, https://doi.org/10.1007/978-3-642-84108-8

L. Cesari, Functional analysis and Galerkin's method, Mich. Math. J., 11, 3, 1964.

D. Trif, La méthode de l'alternative et les solutions numériques des équations Ly=Ny, Preprint 7, pp. 70-89, 1984, Univ. of Cluj-Napoca.

Downloads

Published

1993-02-01

How to Cite

Petrila, T., & Trif, D. (1993). Numerical alternative method scheme for Burgers’ equation. Rev. Anal. Numér. Théor. Approx., 22(1), 87–96. Retrieved from https://ictp.acad.ro/jnaat/journal/article/view/1993-vol22-no1-art9

Issue

Section

Articles