On the solution of nonlinear equations with a nondifferentiable term
Abstract
Not available.Downloads
References
I.K. Argyros, On Newton's method and nondiscrete mathematical induction. Bull. Austral. Math. Soc. Vol. 38, (1988), pp. 131-140, https://doi.org/10.1017/s0004972700027349
M. Balazs and G. Goldner, On the method of the cord and on a modification of it for the solution of nonlinear operator equations. Stud. Cerc. Mat. 20, (1968), pp. 981-990.
X. Chen and T. Yamamoto, Convergence domains of certain iterative methods for solving nonlinear equations. Numer. Funct. Anal. and Optimiz., 10 (1 and 2), (1989), pp. 37-48, https://doi.org/10.1080/01630568908816289
W. B. Gragg and R.A. Tapia, Optimal error bounds for the Newton-Kntorovich Theorem. SIAM J. Numer. Anal. 11 (1974), pp. 10-13, https://doi.org/10.1137/0711002
F. A. Potra and V. Pták, Sharp error bound for Newton's process. Numer. Math. 34, (1980), pp. 63-72, https://doi.org/10.1007/bf01463998
L. Rall, A note on the convergence of Newton's method, S.I.A.M. J. Number. Anal. 1 (1974), pp. 34-36, https://doi.org/10.1137/0711004
W. C. Rheinboldt, A unified convergence theory for a class of iterative processes. S.I.A.M. J. Numer. Anal. 5 (1968), pp. 42-63, https://doi.org/10.1137/0705003
W. Rheinboldt, An adaptive continuation process for solving systems of nonlinear equations, in: Mathematical models and numerical methods. Banach Center Publ. 3, (1978), pp. 129-142, Warszawa: Pwn-Polish Scientific Publishers, https://doi.org/10.4064/-3-1-129-142
J. W. Schmidt, Unter Fehr5erschranker für regular-falsi-verfharen. Period. Math. Hung. 9, (1978), pp. 241-247, https://doi.org/10.1007/bf02018090
T. Yamamoto, A method for finding sharp error bounds for Newton's method under the Kantorovich assumptions. Numer. meth. 44, (1986), pp. 203-220, https://doi.org/10.1007/bf01389624
T. Yamamoto, A note on a posteriori error bound of Zabrejko and Nquen for Zincenko's iteration. Numer. Funct. Anal. and Optimiz., 9, (9 and 10), (1987), pp. 987-994.
P. P. Zabrejko and D. F. Nquen, The majorant method in the theory of Newton-Kantorovich approximations and the Pták error estimates. Numer. Funct. Anal. Optimiz. 9, (1987), pp. 671-684, https://doi.org/10.1080/01630568708816270
A. I. Zincenko, Some approximate methods of solving equations with non-differentiable operators. (Ukrainian). Dopovidi Akad. Navk. Ukrain. RSR (1963), pp. 156-161.
Downloads
Published
Issue
Section
License
Copyright (c) 2015 Journal of Numerical Analysis and Approximation Theory
This work is licensed under a Creative Commons Attribution 4.0 International License.
Open Access. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.