On the solution of nonlinear equations with a nondifferentiable term

Authors

  • Ioannis K. Argyros Cameron University, Lawton, USA
Abstract views: 193

Abstract

Not available.

Downloads

Download data is not yet available.

References

I.K. Argyros, On Newton's method and nondiscrete mathematical induction. Bull. Austral. Math. Soc. Vol. 38, (1988), pp. 131-140, https://doi.org/10.1017/s0004972700027349

M. Balazs and G. Goldner, On the method of the cord and on a modification of it for the solution of nonlinear operator equations. Stud. Cerc. Mat. 20, (1968), pp. 981-990.

X. Chen and T. Yamamoto, Convergence domains of certain iterative methods for solving nonlinear equations. Numer. Funct. Anal. and Optimiz., 10 (1 and 2), (1989), pp. 37-48, https://doi.org/10.1080/01630568908816289

W. B. Gragg and R.A. Tapia, Optimal error bounds for the Newton-Kntorovich Theorem. SIAM J. Numer. Anal. 11 (1974), pp. 10-13, https://doi.org/10.1137/0711002

F. A. Potra and V. Pták, Sharp error bound for Newton's process. Numer. Math. 34, (1980), pp. 63-72, https://doi.org/10.1007/bf01463998

L. Rall, A note on the convergence of Newton's method, S.I.A.M. J. Number. Anal. 1 (1974), pp. 34-36, https://doi.org/10.1137/0711004

W. C. Rheinboldt, A unified convergence theory for a class of iterative processes. S.I.A.M. J. Numer. Anal. 5 (1968), pp. 42-63, https://doi.org/10.1137/0705003

W. Rheinboldt, An adaptive continuation process for solving systems of nonlinear equations, in: Mathematical models and numerical methods. Banach Center Publ. 3, (1978), pp. 129-142, Warszawa: Pwn-Polish Scientific Publishers, https://doi.org/10.4064/-3-1-129-142

J. W. Schmidt, Unter Fehr5erschranker für regular-falsi-verfharen. Period. Math. Hung. 9, (1978), pp. 241-247, https://doi.org/10.1007/bf02018090

T. Yamamoto, A method for finding sharp error bounds for Newton's method under the Kantorovich assumptions. Numer. meth. 44, (1986), pp. 203-220, https://doi.org/10.1007/bf01389624

T. Yamamoto, A note on a posteriori error bound of Zabrejko and Nquen for Zincenko's iteration. Numer. Funct. Anal. and Optimiz., 9, (9 and 10), (1987), pp. 987-994.

P. P. Zabrejko and D. F. Nquen, The majorant method in the theory of Newton-Kantorovich approximations and the Pták error estimates. Numer. Funct. Anal. Optimiz. 9, (1987), pp. 671-684, https://doi.org/10.1080/01630568708816270

A. I. Zincenko, Some approximate methods of solving equations with non-differentiable operators. (Ukrainian). Dopovidi Akad. Navk. Ukrain. RSR (1963), pp. 156-161.

Downloads

Published

1993-08-01

Issue

Section

Articles

How to Cite

Argyros, I. K. (1993). On the solution of nonlinear equations with a nondifferentiable term. Rev. Anal. Numér. Théor. Approx., 22(2), 125-135. https://ictp.acad.ro/jnaat/journal/article/view/1993-vol22-no2-art2