An explicit method of \(C^3\) interpolation using splines

Authors

  • I. I. Verlan Institute of Mathematics, Academy of Sciences, Chişinău, Republic of Moldova
Abstract views: 172

Abstract

Not available.

Downloads

Download data is not yet available.

References

Ahlberg, J. H., Nilson, E.N., Walsh, J.L., The Theory of Splines and their Applications. Academic Press, N.Y., 1967.

Bahavalov, N.S., Numerical analysis, I. Nauka, Moscow, 1975.

Behforoz, G., Paramichael, N., Overconvergence Properties of Quintic Interpolatory Splines. J. Comput. Appl. Math., 24 (1988), pp. 337-347, https://doi.org/10.1016/0377-0427(88)90295-6

De Boor, C., A Practical Guide to Splines, Springer Verlag, N.Y., 1978.

De Boor, C., Hollig, K., Sabin, M., High Accuracy Geometric Hermite Interpolation. CAD, 4 (1987), pp. 269-278, https://doi.org/10.1016/0167-8396(87)90002-1

Dougherty, R.L., Edelman, A., Hyman, J.M., Nonnegativity -, Monotonicity -, or Convexity-Preserving cubic and Quintic Hermite Interpolation. Math. of Comput., 52 (1989), pp. 471-494, https://doi.org/10.1090/s0025-5718-1989-0962209-1

Kallay, M., General B-splines Hermite Interpolation. CAGD, 8 (1991), pp. 159-161 https://doi.org/10.1016/0167-8396(91)90041-9

Kvasov, B.I., Kobkov, V.V., Some Properties of Cubic Hermite Splines with Additional Knots, Doklady Akademii Nauk SSSR, 217 (1974), pp. 1007-1010. (Rus).

Mummy, M.S., Hermite Interpolaiton with B-splines. CAD, 6 (1989), pp. 177-179,https://doi.org/10.1016/0167-8396(89)90021-6

Nikolski, S.M., Course of Mathematical Analysis. Nauka, Moscow, 1973 (Rus).

Schneider, C., Werner, W., Hermite Interpolation: The Barycentric Approach. Computing. 46 (1991), pp. 35-51, https://doi.org/10.1007/bf02239010

Verlan, I.I., About one family of generalized Hermite splines. Bul. Acad. Sci. of Moldova, Mathematica, 2 (8) (1992). 51-66. (Rus).

Verlan, I. I., Generalized local splines with two free generating functions. Rev. Roumaine de Mathem. Pure et Apl., 38 (1993), 2, pp. 185-196.

Verlan, I. I., An explicit method of C² interpolation using splines. Computing (to appear).

Zavialov, Iu. S., Kvasov, B.I., Miroshnichenko, V. L., Methods of splines. Nauka, Moscow, 1980. (Rus.).

Downloads

Published

1994-08-01

How to Cite

Verlan, I. I. (1994). An explicit method of \(C^3\) interpolation using splines. Rev. Anal. Numér. Théor. Approx., 23(1), 103–115. Retrieved from https://ictp.acad.ro/jnaat/journal/article/view/1994-vol23-no1-art12

Issue

Section

Articles