Best approximation in spaces of bounded vector-valued sequences
Abstract
Not available.Downloads
References
Amir, D. and Deutsch, F., Approximation by certain subspaces in the Banach space of continuous vector valued function, J.Approx. Theory, 27 (1979), pp. 254-270.
Buck, R.C., Approximation properties of vector valued functions, Pacific. J. Math., 53 (1974), pp. 85-94, https://doi.org/10.2140/pjm.1974.53.85
Chiacchio, A.O., Best approximation by elements of vector subspaces of Cb(X,E), Preprint No.312, Univ. Estadual de Campinas-Sao Paulo, Brasil (1985), 8 pp.
-, Chebyshev centers in space of vector-valued continunous functions, Ibid. Preprint No.313 (1985), 12 pp.
Cobzaş, S., Antiproximinal sets in some Banach spaces, Mathematica Balkanica 4 (1974), pp. 79-82.
-, Convex antiproximinal sets in the spaces c₀ and c, Mat. Zametki (Moscow) 17 (1975), pp. 449-457 (in Russian).
Cobzaş, S., Antiproximinal sets in Banach spaces of c₀-type, Revue d'Analyse Numérique et de Théorie de l'Aproximation, 7 (1976), pp. 141-145.
Edelstein, M. and Thompson, A.C., Some results on nearest points and support properties of convex sets in c₀, Pacific. J. Math., 40 (1972), pp. 553-560, https://doi.org/10.2140/pjm.1972.40.553
Garkavi, A.L., On the existence of the best net in a Banach space, Uspekhi Mat. Nauk. 15 (1960), pp. 210-211.
-, On the best net and the best cross-secant of a set in a normed space, Izvestija Akad. Naud SSSR, Ser. Matem. 26 (1964), pp. 87-100.
-, On the relative Chebyshev center of a compact set of continuous functions, Mat. Zametki (Moscow), 4 (1973), pp. 469-478.
Lau, K.S., Approximation by continuous vector valued functions, Studia Math., 68 (1980), pp. 291-298.
Olech, C., Approximation of set-valued functions by continuous functions, Colloq. Math., 19 (1968), pp. 285-293, https://doi.org/10.4064/cm-19-2-285-293
Roversi Marconi, M.S., Best approximation of bounded functions by continuous functions, J. Approx. Theory, 41 (1984), pp. 135-148, https://doi.org/10.1016/0021-9045(84)90107-2
Singer, I., Best approximation in normed linear spaces by elements of linear subspaces, Editura Academiei and Springer-Verlag, Bucharest and Berlin-Heidelberg-New Yord, 1970.
-, The theory of best approximation and functional analysis, CEMS, Regional Conference Series in Applied Mathematics, SIAM, Philadelphia, Pensylvania, USA, 1974, pp. 95, https://doi.org/10.1137/1.9781611970548.ch1
Whitley, R., Projeciton m onto c₀, Amer. Math. Monthly, 73 (1966), pp. 285-286,https://doi.org/10.2307/2315346
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2015 Journal of Numerical Analysis and Approximation Theory
This work is licensed under a Creative Commons Attribution 4.0 International License.
Open Access. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.