Spline approximations for neutral delay differential equations
Abstract
Not available.Downloads
References
H.T. Banks and J.A. Burns, Hereditary control problems: numerical methods based on averaging approximations, SIAM J. Control Optim. 16 (1978), pp. 169-208, https://doi.org/10.1137/0316013
A. Bellen, One step collocation for delay differential equations, J. Comput. Appl. Maths. 10 (1984), pp. 275-285, https://doi.org/10.1016/0377-0427(84)90039-6
A. Bellen, Constrained mesh methods for functional differential equations, In "Delay Equations Approximations and Applicaitons", eds G. Meinardus and G. Nuruberg, ISNM, 74: Birkhauserm 1985, pp. 52-70, https://doi.org/10.1007/978-3-0348-7376-5_3
A. Bellen, Z. Jackiewicz and M. Zennaro, Stability analysis of one step methods for neutral delay-differential equations, Numer. Math. 52 (1988), pp. 605-619, https://doi.org/10.1007/bf01395814
A. Bellen, M. Zennaro, Numerical solution of delay differential equaitons by uniform correction to an implicit Runge-Kutta method, Numer. Math. 47 (1985), pp. 301-316, https://doi.org/10.1007/bf01389713
R.D. Driver, Ordinary and delay differential equations, Applied Mathematical Science, vol. 20, Springer Verlag, 1977, Berlin-Heidelberg-New York.
M. Fröhner, Losung gewohnlicher Differentialgleichungen mit nacheilendum Argument durch Spline-Funktionen, Tagungs-brichete der Jahrestagung Numer. Math. T.H. Karl-Marx-Stadt (1973), pp. 2026.
A. Halanay and Vl. Răsvan, Approximation od delays by ordinary differential equaitons, INCREST - Institutul de Matematică, Preprint series în Matheamtics, NO 22/1978.
J. Hale, Theory of functional differential equations, Springer-Verlag, Berlin, 1977.
U. Hornung, Euler Verfahren fur neutrale Funktional-Differential Gleichungen, Numer. Math. 24 (1975), pp. 233-240, https://doi.org/10.1007/bf01436594
Z. Jackiewics: One step methods for the numerical solution of Volterra funcitonal differential equation of neutral type. Applicable Anal. 12 (1981), pp. 1-11, https://doi.org/10.1080/00036818108839344
Z. Jachiewicz, The numerical solution of Volterra functional differential equations of neutral type. SIAM J. Numer. Anal. 18 (1981), pp. 615-626, https://doi.org/10.1137/0718040
Z. Jackiewics, Adams Methods for neutral functional differential equations, Numer. Math. 39 (1982), pp. 221-230,https://doi.org/10.1007/bf01408695
Z. Jackiewics, Predictor-corrector methods for the numerical solution of neutral functional differential equations, in Proc. Conf. Numer. Anal. of Parametrized Nonlinear Eqs. J.F. Porter Ed. Univ. Arkansas, Fayetteville, 1983, pp. 14-23.
Z. Jackiewics, One step methods of any order for neutral functional differential equations, SIAM J. Numer. Anal. 21 (1984), pp. 486-511, https://doi.org/10.1137/0721036
Z. Jackiewics, Quasilinear multistep methods and variable step predictor-corrector methods for neutral functional differential equaitons, SIAM J. Numer. Anal. 23 (1986), pp. 423-452, https://doi.org/10.1137/0723029
Z. Kamont and M. Kwapisz, On the Cauchy problems for differential-delay equations in Banach spaces, Math. Nachr. 74 (1976), pp. 173-190, https://doi.org/10.1002/mana.3210740113
F. Kappel and K. Kunisch, Spline approximations for neutral differential equations, SIAM J. Numer. Anal., 18, 6 (1981), pp. 1058-1080, https://doi.org/10.1137/0718072
K. Kunisch, Neutral functional differential equations in Lp spaces and averaging approximations, Non linear Anal. Theory. Methods and Applicaitons, 3 (1979), pp. 419-447, https://doi.org/10.1016/0362-546x(79)90060-9
G. Meinardus and G. Nurnberger, Delay equations, Approximaitons and Application. ISNM, vol. 74, Birkhauser Verlag, Basel-Boston-Stuttgart, 1985.
G. Micula, Spline functions and applications (Romanian), Editura Tehnică, Bucharest, 1978.
G. Micula, Approximate solution of the differential equation y′′=f(x,y) with spline functions. Math. Comput. 27 (1973), pp. 807-816.
G. Micula, Numeriche Behandlung von Differentialgleichungen mit modifiziertem Argument mit Spline-Funktionen, Proc. Colloqguium on Approz. Mat. and Optimization, Cluj-Napoca, Oct.25-27 (1984), pp. 111-128.
G. Micula, Uber die numerische Losung gewohnlicher Differentialgleichungen zweiter Ordinung mit nacheilendem Argument durch Spline-Funktionen, Revue Roumaine de Math. Pures et Appliquées, 34 (1989), 10, pp. 899-909.
G. Micula, H. Akça, Numerical solution of differential equations with deviating argument using spline functions, Studia Univ. Babeş-Bolyai, Mathematica 33 (1988), 2, pp. 45-57.
G. Micula, H. Akça, Approximate solutions of the second order differential equations with deviating argument by spline funcitons, Mathematica-Revue d'Analyse Numérique et de Theorie de l'Approximation, 30 (53), 1 (1988), pp. 37-46.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2015 Journal of Numerical Analysis and Approximation Theory
This work is licensed under a Creative Commons Attribution 4.0 International License.
Open Access. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.