Spline approximations for neutral delay differential equations

Authors

  • A. Bellen University di Trieste, Italy
  • Gheorghe Micula "Babeş-Bolyai" University, Cluj-Napoca, Romania
Abstract views: 189

Abstract

Not available.

Downloads

Download data is not yet available.

References

H.T. Banks and J.A. Burns, Hereditary control problems: numerical methods based on averaging approximations, SIAM J. Control Optim. 16 (1978), pp. 169-208, https://doi.org/10.1137/0316013

A. Bellen, One step collocation for delay differential equations, J. Comput. Appl. Maths. 10 (1984), pp. 275-285, https://doi.org/10.1016/0377-0427(84)90039-6

A. Bellen, Constrained mesh methods for functional differential equations, In "Delay Equations Approximations and Applicaitons", eds G. Meinardus and G. Nuruberg, ISNM, 74: Birkhauserm 1985, pp. 52-70, https://doi.org/10.1007/978-3-0348-7376-5_3

A. Bellen, Z. Jackiewicz and M. Zennaro, Stability analysis of one step methods for neutral delay-differential equations, Numer. Math. 52 (1988), pp. 605-619, https://doi.org/10.1007/bf01395814

A. Bellen, M. Zennaro, Numerical solution of delay differential equaitons by uniform correction to an implicit Runge-Kutta method, Numer. Math. 47 (1985), pp. 301-316, https://doi.org/10.1007/bf01389713

R.D. Driver, Ordinary and delay differential equations, Applied Mathematical Science, vol. 20, Springer Verlag, 1977, Berlin-Heidelberg-New York.

M. Fröhner, Losung gewohnlicher Differentialgleichungen mit nacheilendum Argument durch Spline-Funktionen, Tagungs-brichete der Jahrestagung Numer. Math. T.H. Karl-Marx-Stadt (1973), pp. 2026.

A. Halanay and Vl. Răsvan, Approximation od delays by ordinary differential equaitons, INCREST - Institutul de Matematică, Preprint series în Matheamtics, NO 22/1978.

J. Hale, Theory of functional differential equations, Springer-Verlag, Berlin, 1977.

U. Hornung, Euler Verfahren fur neutrale Funktional-Differential Gleichungen, Numer. Math. 24 (1975), pp. 233-240, https://doi.org/10.1007/bf01436594

Z. Jackiewics: One step methods for the numerical solution of Volterra funcitonal differential equation of neutral type. Applicable Anal. 12 (1981), pp. 1-11, https://doi.org/10.1080/00036818108839344

Z. Jachiewicz, The numerical solution of Volterra functional differential equations of neutral type. SIAM J. Numer. Anal. 18 (1981), pp. 615-626, https://doi.org/10.1137/0718040

Z. Jackiewics, Adams Methods for neutral functional differential equations, Numer. Math. 39 (1982), pp. 221-230,https://doi.org/10.1007/bf01408695

Z. Jackiewics, Predictor-corrector methods for the numerical solution of neutral functional differential equations, in Proc. Conf. Numer. Anal. of Parametrized Nonlinear Eqs. J.F. Porter Ed. Univ. Arkansas, Fayetteville, 1983, pp. 14-23.

Z. Jackiewics, One step methods of any order for neutral functional differential equations, SIAM J. Numer. Anal. 21 (1984), pp. 486-511, https://doi.org/10.1137/0721036

Z. Jackiewics, Quasilinear multistep methods and variable step predictor-corrector methods for neutral functional differential equaitons, SIAM J. Numer. Anal. 23 (1986), pp. 423-452, https://doi.org/10.1137/0723029

Z. Kamont and M. Kwapisz, On the Cauchy problems for differential-delay equations in Banach spaces, Math. Nachr. 74 (1976), pp. 173-190, https://doi.org/10.1002/mana.3210740113

F. Kappel and K. Kunisch, Spline approximations for neutral differential equations, SIAM J. Numer. Anal., 18, 6 (1981), pp. 1058-1080, https://doi.org/10.1137/0718072

K. Kunisch, Neutral functional differential equations in Lp spaces and averaging approximations, Non linear Anal. Theory. Methods and Applicaitons, 3 (1979), pp. 419-447, https://doi.org/10.1016/0362-546x(79)90060-9

G. Meinardus and G. Nurnberger, Delay equations, Approximaitons and Application. ISNM, vol. 74, Birkhauser Verlag, Basel-Boston-Stuttgart, 1985.

G. Micula, Spline functions and applications (Romanian), Editura Tehnică, Bucharest, 1978.

G. Micula, Approximate solution of the differential equation y′′=f(x,y) with spline functions. Math. Comput. 27 (1973), pp. 807-816.

G. Micula, Numeriche Behandlung von Differentialgleichungen mit modifiziertem Argument mit Spline-Funktionen, Proc. Colloqguium on Approz. Mat. and Optimization, Cluj-Napoca, Oct.25-27 (1984), pp. 111-128.

G. Micula, Uber die numerische Losung gewohnlicher Differentialgleichungen zweiter Ordinung mit nacheilendem Argument durch Spline-Funktionen, Revue Roumaine de Math. Pures et Appliquées, 34 (1989), 10, pp. 899-909.

G. Micula, H. Akça, Numerical solution of differential equations with deviating argument using spline functions, Studia Univ. Babeş-Bolyai, Mathematica 33 (1988), 2, pp. 45-57.

G. Micula, H. Akça, Approximate solutions of the second order differential equations with deviating argument by spline funcitons, Mathematica-Revue d'Analyse Numérique et de Theorie de l'Approximation, 30 (53), 1 (1988), pp. 37-46.

Downloads

Published

1994-08-01

How to Cite

Bellen, A., & Micula, G. (1994). Spline approximations for neutral delay differential equations. Rev. Anal. Numér. Théor. Approx., 23(2), 117–125. Retrieved from https://ictp.acad.ro/jnaat/journal/article/view/1994-vol23-no2-art1

Issue

Section

Articles