One-step methods for the numerical solution of stiff ordinary differential systems

Authors

  • Dana Petcu University of Timişoara, Romania
Abstract views: 177

Abstract

Not available.

Downloads

Download data is not yet available.

References

van Bokhoven, W.M.G., Efficient Higher Order Implicit One-step Methods for Integration of Stiff Differential Equation, BIT 20, 1980, pp. 34-43, https://doi.org/10.1007/bf01933583

Caira, R., Costabile, C., Costabile, F., A Class of Pseudo Runge-Kutta Methods, BIT, 30, 1990, pp. 642-649, https://doi.org/10.1007/bf01933212

Carrol, J., A Composite Integration Scheme for the Numerical Solution of System of Ordinary Differential Equations, Journal of Computational and Applied Mathematicas 33, 1990, pp.245-259.

Cash, J.R., Singhal, A., Mono-implicit Runge-Kutta for the Numerical Integration of Stiff Differential Systems, IMA Journal of Numerical Analysis 2, 1982, pp. 211-227, https://doi.org/10.1093/imanum/2.2.211

Cash, J.R., A Class of Implicit Runge-Kutta Methods for the Numerical Integration of Stiff Ordinary Differential Equaiton, Journal of the Association for Computing Machinery 22, 1975, pp. 504-511, https://doi.org/10.1145/321906.321915

Cooper, G.J., Sayfy, A., Additive Runge-Kutta Methods for Stiff Differential Equations, Mathematics of Computation 40, no. 161, 1983, pp. 207-218, https://doi.org/10.2307/2007370

Dahlquist, G., On One-leg Multistept Methods, SIAM Journal of Numerical Analysis 20, no.6, 1983, pp. 1130-1138, https://doi.org/10.1137/0720082

England R., Some Hybrid Implicit Stiffly Stable Methods for Ordinary Differential Equation, in Numerical Analysis. Proceedings of the Third IIMAS Workshop held at Cocoyoc, Mexico, January 1981, Lectures Notes in Mathematics 909, 1982.

Engright H. W., Second Derivative Multistep Methods for Stiff Ordinary Differential Equation, SIAM Journal of Numerical Analysis 11, no.2, 1974, pp. 321-331, https://doi.org/10.1137/0711029

Lautsch M., An Implicit Off-step Point Method for the Numerical Integration of Stiff Differential Equation, Computing 31, 1983, pp. 177-183, https://doi.org/10.1007/bf02259913

Patricio F., A Class of Hybrid Formula for the Numerical Integration of Stiff Systems, BIT 23, 1983, pp. 360-369, https://doi.org/10.1007/bf01934464

Petcu, D., New Methods of solving Stiff Differential Equation Systems, Analele Universităţii din Timişoara, vol. XXVI, fasc.3, 1988, Seria Ştiinţe Matematice, pp. 67-72.

Petcu, D., Hibrid Methods for Stiff Differential Equations, Preprint 92-20, Universität Heidelberg, Heidelberg 1992.

Downloads

Published

1994-08-01

How to Cite

Petcu, D. (1994). One-step methods for the numerical solution of stiff ordinary differential systems. Rev. Anal. Numér. Théor. Approx., 23(2), 197–216. Retrieved from https://ictp.acad.ro/jnaat/journal/article/view/1994-vol23-no2-art9

Issue

Section

Articles