On the Chebyshev-tau approximation for some singularly perturbed two-point boundary value problems-numerical experiments

Authors

  • C. I. Gheorghiu Tiberiu Popoviciu, Institute of Numerical Analysis, Romanian Academy
  • S. I. Pop "Babeş-Bolyai" University, Cluj-Napoca, Romania

Abstract

Not available.

Downloads

Download data is not yet available.

References

C. Canuto, M.Y. Hussaini, A. Quarteroni, T.A., Zang, Spectral Methods in Fluid Dynamics, Springer-Verlag, Springer Series in Computational Physics, 1988.

C. I. Gheorghiu, On a Linear Singularity Perturbed TPBVP, Univ. of Cluj-Napoca, Seminar of Functional Analysis and Numerical Methods, Preprint 1 (1988), pp. 67-74.

D. Gottlieb, S.A. Orszag, Numerical analysis of Spectral Methods: Theory and Applications, SIAM Philadelphia, 1977.

C. Johson, Numerical solutions of p.d.e. by the f.e.m., Cambridge Univ. Press. 1987.

R. B. Kellog, A. Tsan, analysis of some difference approximations for a singular perturbaiton problem without turning points, Math. Comput. 32, pp. 1025-1039 (1978), https://doi.org/10.1090/S0025-5718-1978-0483484-9.

Y. Maday, A. Quarteroni, Legendre and Chebyshev Spectral Approixmation of Burgers' Equation, Numer. Math. 37, pp. 321-332 (1981), https://doi.org/10.1007/BF01400311.

S.A. Orszag, Accurate Solution of the Orr-Sommerfeld stability equation, J. Fluid Mech., 50, pp. 689-703 (1971), https://doi.org/10.1017/S0022112071002842.

M. Stynes, E. O'Riordan, An analysis of a t.p.b.c.p. with a boundary layer, using only finite element techniques, Univ. College Cork. Ireland, 1989.

Downloads

Published

1995-08-01

How to Cite

Gheorghiu, C. I., & Pop, S. I. (1995). On the Chebyshev-tau approximation for some singularly perturbed two-point boundary value problems-numerical experiments. Rev. Anal. Numér. Théor. Approx., 24(1), 117–124. Retrieved from https://ictp.acad.ro/jnaat/journal/article/view/1995-vol24-nos1-2-art12

Issue

Section

Articles