On the Chebyshev-tau approximation for some singularly perturbed two-point boundary value problems-numerical experiments
Abstract
Not available.Downloads
References
C. Canuto, M.Y. Hussaini, A. Quarteroni, T.A., Zang, Spectral Methods in Fluid Dynamics, Springer-Verlag, Springer Series in Computational Physics, 1988.
C. I. Gheorghiu, On a Linear Singularity Perturbed TPBVP, Univ. of Cluj-Napoca, Seminar of Functional Analysis and Numerical Methods, Preprint 1 (1988), pp. 67-74.
D. Gottlieb, S.A. Orszag, Numerical analysis of Spectral Methods: Theory and Applications, SIAM Philadelphia, 1977.
C. Johson, Numerical solutions of p.d.e. by the f.e.m., Cambridge Univ. Press. 1987.
R. B. Kellog, A. Tsan, analysis of some difference approximations for a singular perturbaiton problem without turning points, Math. Comput. 32, pp. 1025-1039 (1978), https://doi.org/10.1090/S0025-5718-1978-0483484-9.
Y. Maday, A. Quarteroni, Legendre and Chebyshev Spectral Approixmation of Burgers' Equation, Numer. Math. 37, pp. 321-332 (1981), https://doi.org/10.1007/BF01400311.
S.A. Orszag, Accurate Solution of the Orr-Sommerfeld stability equation, J. Fluid Mech., 50, pp. 689-703 (1971), https://doi.org/10.1017/S0022112071002842.
M. Stynes, E. O'Riordan, An analysis of a t.p.b.c.p. with a boundary layer, using only finite element techniques, Univ. College Cork. Ireland, 1989.
Downloads
Published
Issue
Section
License
Copyright (c) 2015 Journal of Numerical Analysis and Approximation Theory
This work is licensed under a Creative Commons Attribution 4.0 International License.
Open Access. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.