A sequence of positive linear operators
Abstract
Not available.Downloads
References
M. Dumitrescu, D. Florea, and C. Tudor, Probleme de teoria probabilităţilor şi statistică matematică. Ed. Tehnică, Bucureşti, 1985.
W.A.J. Luxembrug, Problem 217. Nieuw Archief voor Wiskunde, 18,(1980), 96.
E. Neumann and J. Pečarić, Inequalities involving multivariate convex functions, J. Math. Anal. Appl., 137, (1989), pp. 541-549.
J. Pečarić, An inequality for 3-convex functions, J. Math. Anal. Appl., 90, pp. 213-218 (1982).
J. Pečarić and I. Raşa, Inequalities for divided differences of n-convex functions. Studia Univ.Babeş-Bolyai, Math., 33(2) (1990), pp. 7-10.
J. Pečarić and I. Raşa, A linear operator preserving k-convex functions. Bul. Şt. IPCN, 33, (1990), pp. 23-26.
T. Popoviciu, Remarques sur le reste de certaines formules d'approximation d'une difference divisée par les dérivées. Buletinul Institutul Politehnic din Iaşi, Seria nouă, XIII (XVII), 3-4, (1967), pp. 103-109.
I. Raşa, Properietăţi ale unor polinoame Bernstein modificate. Conf. Nat. Mat. Apl. Mec. IPCN, pages 361-364, 1988.
I. Raşa, Korovkin approximation and parabolic functions. Conf. Sem. Mat. Univ. Bari, 236, 1991.
, S. Rădulescu and M. Rădulescu, Teoreme şi probleme de analiză matematică, Ed. Did. Ped., Bucureşti, 1982.
P.C. Sikkema, On some linear positive operators, Indag. Math., 32, (1970), pp. 327-337.
D. Ywick, A divided difference inequality for n+convex funcitons, J. Math. Anal. Appl., 104, (1984) pp. 435-436.
Downloads
Published
Issue
Section
License
Copyright (c) 2015 Journal of Numerical Analysis and Approximation Theory
This work is licensed under a Creative Commons Attribution 4.0 International License.
Open Access. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.