A sequence of positive linear operators

Authors

  • M. Ivan Technical University, Cluj-Napoca, Romania
  • I. Rașa Technical University, Cluj-Napoca, Romania
Abstract views: 234

Abstract

Not available.

Downloads

Download data is not yet available.

References

M. Dumitrescu, D. Florea, and C. Tudor, Probleme de teoria probabilităţilor şi statistică matematică. Ed. Tehnică, Bucureşti, 1985.

W.A.J. Luxembrug, Problem 217. Nieuw Archief voor Wiskunde, 18,(1980), 96.

E. Neumann and J. Pečarić, Inequalities involving multivariate convex functions, J. Math. Anal. Appl., 137, (1989), pp. 541-549.

J. Pečarić, An inequality for 3-convex functions, J. Math. Anal. Appl., 90, pp. 213-218 (1982).

J. Pečarić and I. Raşa, Inequalities for divided differences of n-convex functions. Studia Univ.Babeş-Bolyai, Math., 33(2) (1990), pp. 7-10.

J. Pečarić and I. Raşa, A linear operator preserving k-convex functions. Bul. Şt. IPCN, 33, (1990), pp. 23-26.

T. Popoviciu, Remarques sur le reste de certaines formules d'approximation d'une difference divisée par les dérivées. Buletinul Institutul Politehnic din Iaşi, Seria nouă, XIII (XVII), 3-4, (1967), pp. 103-109.

I. Raşa, Properietăţi ale unor polinoame Bernstein modificate. Conf. Nat. Mat. Apl. Mec. IPCN, pages 361-364, 1988.

I. Raşa, Korovkin approximation and parabolic functions. Conf. Sem. Mat. Univ. Bari, 236, 1991.

, S. Rădulescu and M. Rădulescu, Teoreme şi probleme de analiză matematică, Ed. Did. Ped., Bucureşti, 1982.

P.C. Sikkema, On some linear positive operators, Indag. Math., 32, (1970), pp. 327-337.

D. Ywick, A divided difference inequality for n+convex funcitons, J. Math. Anal. Appl., 104, (1984) pp. 435-436.

Downloads

Published

1995-08-01

How to Cite

Ivan, M., & Rașa, I. (1995). A sequence of positive linear operators. Rev. Anal. Numér. Théor. Approx., 24(1), 159–164. Retrieved from https://ictp.acad.ro/jnaat/journal/article/view/1995-vol24-nos1-2-art16

Issue

Section

Articles