On computational complexity in solving equations by interpolation methods


  • Ion Păvăloiu Tiberiu Popoviciu, Institute of Numerical Analysis, Romanian Academy


Not available.


Download data is not yet available.


Brent, R., Winograd, S. and Wolfe, Ph., Optimal Iterative Processes for Root-Finding. Numer. Math. 20(5) (1973), pp. 327-341.

Casulli, V. and Trigiante, D., Sui procedimenti Iterativi Compositi. Calcolo, XIII. IV (1976), pp. 403-420.

Coman, Gh., Some practical Approximation Methods for Nonlinear Equations. Mathematica Revue d'Analyse Numérique et de Théorie de l'Approximation, 11, 1-2 (1982), pp. 41-48.

Kacewitcz, B., An Integral-Interpolation Iterative Method for the Soltuion of Scalar Equations, Numer. Math. 26 (4), (1976), pp. 355-365.

Kung, H.T. and Traub, J.F., Optimal Order and Efficiency for Iterations With Two Evaluations. SIAM, Numer Anal. 13, 1, (1976), pp. 84-99.

Ostrowski, M.A., Soltuion of Equations and Systems of Equations. Academic Press. New York and London (1960).

Păvăloiu, I., The Soltuion of the Equations by Interpolation (Romanian) Ed. Dacia Cluj-Napoca (1981).

Păvăloiu, I., Optimal Problems Concerning Interpolation Methods of Solution of Equations. Publications de L'Institut Mathématique Beograd. 52, (66), (1992), pp. 113-126.

Traub, J.F., Iterative Methods for the Solution of Equations. Prentice-Hall, New York (1964).

Traub, J.F., Theory of Optimal algorithms, Preprint. Department of Computer Science Carnegie-Mellon University (1973), pp. 1-22.

Traub, J.F. and Wozniakowski, H., Optimal Radius of Convergence of Interpolatory Iterations for Operator Equations, Aequationes Mathematicae, 21 (1980), pp. 159-172.

Turowicz, A.B., Sur les dérivées d'ordre suprieur d'une fonction inverse, Ann. Polon Math.8 (1960), pp. 265-269.




How to Cite

Păvăloiu, I. (1995). On computational complexity in solving equations by interpolation methods. Rev. Anal. Numér. Théor. Approx., 24(1), 201–213. Retrieved from https://ictp.acad.ro/jnaat/journal/article/view/1995-vol24-nos1-2-art22