On the behaviour of the tangential modulus of a Banach space I

Authors

  • Ioan Şerb "Babeş-Bolyai" University, Cluj-Napoca, Romania
Abstract views: 171

Abstract

Not available.

Downloads

Download data is not yet available.

References

Amir, D., Characterizations of Inner Product Spaces. Birkhäuser Verlag, Basel-Boston-Stuttgard, 1986.

Busemann, H., The Geometry of Geodesics, Academic Press, New York 1955.

Figiel, T., On the moduli of convexity and smoothness. Studia Math. LVI (1976), pp. 121-155.

Ka-Sing Lau, Ji Gao, On two classes of Banach spaces with uniform normal structure, Studia Math. XCIX, 1 (1991), pp. 41-56.

Lindenstrauss, J., Tzafriri, L., Classical Banach Spaces II, Function Spaces, New York 1979.

Liokoumovich, V.I., The existence of Banach spaces with non-convex modulus of convexity (Russian), Izv Vysh. Ucebn. Zaved. Mathematica 12 (1973), pp. 43-50.

Przeslawski, K., Yost, D., Lipschitz selections retractions and extensions, Preprint (preliminary version), 1992 and 1993 variant.

Schäffer, J.J., Geometry of Spheres in Normed Spaces. Dekker, 1976.

Downloads

Published

1995-08-01

How to Cite

Şerb, I. (1995). On the behaviour of the tangential modulus of a Banach space I. Rev. Anal. Numér. Théor. Approx., 24(1), 241–248. Retrieved from https://ictp.acad.ro/jnaat/journal/article/view/1995-vol24-nos1-2-art27

Issue

Section

Articles