Variational approximation for a Dirichlet-Neumann problem of the heat conduction through rectangular plates

Authors

  • Radu Brădean "Babeş-Bolyai" University, Cluj-Napoca, Romania
Abstract views: 193

Abstract

Not available.

Downloads

Download data is not yet available.

References

Mikhlin S.G., Variational Methods in Mathematical Physics, Macmillan, New York, 1964.

Rectorys K., Variational Methods in Mathematics, Science and Engineering, Moskva, Mir, 1985 (in Russian).

Milne R.D., Applied Functional Analysis, an Introductory Treatment Patman Ad. Publ. Progr., London, 1980.

Rvachev V.L., Theory of R-Functions and Their Applications, Naukova Dumka, Kiev, 1982 (in Russian).

Connor, J.J., Brebbia C.A.,Finite Element Techniques and Fluid Flow, Newnes-Butterworths, London, 1976.

Farlow S.J., Partial Differential Equations for Scientists and Engineers, John Wiley and Sons, Inc., 1982 (in Russian).

Szilágy Pál, Ecuaţiile fizicii matematice, Student text-book Publishing House of the University of Cluj, 1972.

Brădeanu P., Boncuţ M., Brădeanu D., O metodă variaţională Ritz pentru o problemă a conducţiei căldurii în plăci plane. Aplicaţii cu funcţii de probă sub formă de monoame xiyi St. cerc. mec.apl., 54, 5-6 (1995), pp. 371-379 (in Romanian).

Downloads

Published

1995-08-01

How to Cite

Brădean, R. (1995). Variational approximation for a Dirichlet-Neumann problem of the heat conduction through rectangular plates. Rev. Anal. Numér. Théor. Approx., 24(1), 23–36. Retrieved from https://ictp.acad.ro/jnaat/journal/article/view/1995-vol24-nos1-2-art3

Issue

Section

Articles