Approximation of continuously Gâteaux derivable functionals by Markov operators

Authors

  • S. G. Gal Universtiy of Oradea, Romania

Keywords:

Markov operators, Gâteaux derivative, normed space, Bernstein-Lotosky-Schnabl operators
Abstract views: 193

Abstract

The main purpose of this paper is to extend a classical quantitative result in approximation of continuously derivable functions on [a, b] by positive and linear operators, to the approximation by Markov operators of the real-valued functions defined and having a continuous Gateaux derivative on a compact convex subset of a normed space.

Downloads

Download data is not yet available.

References

D. Andrica, C. Mustăţa, An abstract Korovkin-type theorem and applicaitons, Studia Univ."Babeş-Bolyai", ser. Math. 34, 2 (1989), pp. 44-51.

P. R. Beesack, J. P. Pecaric, On Jessen's ienquality for convex functions, I. J. Math. Anal. Appl. 110, 2 (1985), pp. 536-552.

R. A. Devore, Optimal approximation by positive linear operators, in Proc. Conf. Constructive Theory of Functions, Budapest, 1969.

R. A Devore, The approximation of continuous functions by positive linear operators., Springer, Berlin-Heidelberg-New York , 1972.

G. Dincă, Variational Methods and Applications (Romanian). Ed. Tehnică, Bucharest, 1980.

H. H. Gonska, On approximation in spaces of continuous fucntions, Bull. Austral. Math. Soc., 28 (1983), pp. 411-432.

H. H. Gonska, On approximation of continuously differentiable functions by positive linear operators, Bull. Austral. Math. Soc., 27 (1983), pp. 73-81.

H. H. Gonska, On approximation by linear operators: improved estimates, Anal. Numér. Théor. Approx. (Cluj), 14 (1985), pp. 7-32.

. H. H. Gonska, J. Meier, On approximation by Bernstein-type operators; best constants, Studia Sc. Math. Hungar,m 22 (1987), pp. 287-297.

B. Jessen, Bemaerkinger om Konvekse Functioner of Uligheder imellem Middelvaedier I. Math. Tidsskrift B (1931), pp. 17-28.

M. A. Jimenez Pozo, Déformation de la conveité et théorèmes du type Korovkin, C.R. Acad. Sci. Paris, Ser. A 290 (1980), pp. 213-215.

G. G. Lorentz, Approximation of Functions, Holt, Rinehart and Winston, Nwe York, 1966.

T. Nishishiraho, The degree of convergence of positive linear operators, Tôhoku Mat. J. 29 (1977), pp. 81-89.

T. Nishishiraho, Saturation of bounded linear operators. Tôhoku Math. J. 30 (1979), pp. 69-81.

T. Nishishiraho, Quantitative theorems on approximation processes of positive linear oeprators, Multivariate approximation theory II (Proc. Conf. Math. Res. Inst. Oberwolfach 1982; ed. W. Schempp and K. Zeller), ISNM vol. 61, 297-311, Birkhäuser Verlag, Basel-Boston-Stuttgart, 1982.

T. Nishishiraho, Convergence of positive linear approximation processes, Tôhoku Math. J. 35 (1983), pp. 441-458.

T. Nishishiraho, The rate of convergence of positive linear approximation processes, Approximation theory IV (Proc. Int. Symp. College Station 1983; ed. C.K. Chui, L.L Schumaker and J. D. Ward) pp. 635-641, Academic Press, New Yord-London-San Francisco, 1983.

T. Nishishiraho, The degree of approximation by positive linear approximation processes, Bull. Coll. Educ., Univ. Ryukyus, 28 (1985), 7-36.

T. Nishishiraho, The degree of approximation by iterations of positive linear operators, Approximation theory V (Proc. Int. Sump. College Station 1986; ed. C. K. Chui, L.L. Schumaker and J. D. Ward), pp. 507-510, Academic Press, New York-London-San Francisco, 1986.

T. Nishishiraho, The convergence and saturation of iterations of positive linear operators, Math. Z., 194 (1987), pp. 397-404.

T. Nishishiraho, The order of approximation by positive linear operators, Tôhoku Math., J. 40 (1988), pp. 617-632.

Downloads

Published

1996-08-01

How to Cite

Gal, S. G. (1996). Approximation of continuously Gâteaux derivable functionals by Markov operators. Rev. Anal. Numér. Théor. Approx., 25(1), 111–119. Retrieved from https://ictp.acad.ro/jnaat/journal/article/view/1996-vol25-nos1-2-art12

Issue

Section

Articles