On a nonlinear integral inequality arising in the theory of differential equations
Abstract
Not available.Downloads
References
V. Barbu, Differential Equations (in Romanian), Ed. Junimea, Iaşi, 1985.
H. Brézis, Opérateure maximaux monotones et sémigroupes de contractions dans les éspaces de Hilbert, North-Holand, Amsterdam, 1973.
C. M. Tafermos, The second law of Termodynamics and stability. Arc. Rat. Mech. Anal. 70 (1979), pp. 167-179, https://doi.org/10.1007/bf00250353
S. S. Dragomir, The Gronwall Type Lemmas and Applicaitons, Monografii Matematice, Univ. Timişoara 29, 1987.
A. Haraux, Nonlinear Evolution equations: Global behavior of solutions, Lecture Notes in Mathematics, No. 841, Springer-Verlag, Berlin, New York, 1981.
S. N. Olekhnik, Boundedness and unboundedness of solutions of some systems of ordinary differential equations, Vestnik Moscov Univ. Mat. 27 (1972), pp. 34-44.
L. Ou-Iang, The boundedness of solutions of linear differential equations y′′+A(t)y=0, Shuxue Jinzhan 3(1957), pp. 409-415.
B. G. Pachpatte, On some integrodifferential inequalities of the Wendorff type, J. Math. Anal. Appl. 73 (1980), pp. 491-500, https://doi.org/10.1016/0022-247x(80)90293-0
B. G. Pachpatte, Discrete inequalities in two variables and their applications, Radovi Matematicki 6 (1990), pp. 235-247.
M. Tsutsumi and I. Fikunda, On solutions of the derivative nonlinear Schrödinger equation. Existence and uniqueness theorem, Funkcialaj Ekvacioj, 23 (1980), pp. 259-277.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2015 Journal of Numerical Analysis and Approximation Theory
This work is licensed under a Creative Commons Attribution 4.0 International License.
Open Access. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.