The preservation of the property of the quasiconvexity of higher order by Bernstein's operators

Authors

  • Radu Păltănea University of Braşov, Romania
Abstract views: 179

Abstract

Not available.

Downloads

Download data is not yet available.

References

M. L., Diviccaro, B. Fisher and S. Sessa, A common fixed point theorem of Greguš type, Pub. Mat. 34 (1987), pp. 83-89.

B. Fisher and S. Sessa, On a fixed points theorem of Greguš, Internat, J. Math. and Math. Sci, 9 (1986), pp. 23-28.

M. Greguš, Jr., A fixed point theorem in Banach spaces, Boll. Un. Mat. Ital. (5) 17-A (1980), pp. 193-198.

G. Jungck, compatible mappings and common fixed points, Internat. J. Math. and Math. Sci. 9 (1986), pp. 771-779.

G. Jungck, Compatible mappings and common fixed points (2). Internat. J. Math. and Math. Sci. 11 (1988),, pp. 285-288.

G. Jungck, Common fixed points of commuting and compatible maps on compata, Proc., Amer. Math. Soc. 103 (1988), pp. 977-983.

G. Jungck, P. P. Murthy and Y. J. Cho, compatible mappings of type (A) and common fixed points, Math. Japonica 38 (1993), pp. 381-390.

S. M. Kang, Y. J. cho and G. Jungck, Common fixed points of compatible mappings, Internat. J. Math. and Math. Sci. 13 (1990), pp. 61-66.

S. M. Kang and Y. P. Kim, Common fixed point theorems. Math. Japonica (1992), pp. 1031-1039.

W. A. Kirk, Fixed point theorems for non-expansive mappings, Nonlinear Func. Anal. Proc. Sym. Pure Math. Vol. 18 Part. I A.M.S. (1970), pp. 162-168.

P. P. Murthy, Y. J. Cho and B. Fisher, Compatible mappings of type (A), and common fixed point theorems of Greguš, to appear.

S. Sessa, On a weak commutativily condition of mappings in fixed point considerations, Publ. Inst. Math. 32 (46) (1982), pp. 149-153.

S. P. Singh and B. A. Meade, On common fixed point theorems, Bull. Austral. Math. Soc. 16(1977), pp. 49-53.

C. S. Wong, On a fixed point theorem of contractive type, Proc. Amer.Math. Soc. 57 (1976), pp. 283-284.

Downloads

Published

1996-08-01

How to Cite

Păltănea, R. (1996). The preservation of the property of the quasiconvexity of higher order by Bernstein’s operators. Rev. Anal. Numér. Théor. Approx., 25(1), 195–201. Retrieved from https://ictp.acad.ro/jnaat/journal/article/view/1996-vol25-nos1-2-art19

Issue

Section

Articles