Optimality conditions for multiobjective symmetric convex programming
Abstract
Not available.Downloads
References
Bector C.R., Jolly P.L., Programming problems with pseudomonotonic objectives, Optimization, 15 (1984), 2, pp. 217-219.
Bhatt S.L., Linearization techiniuq for linear fractional and pseudomonotonic programs revisited, Cahiers du CERO, 23 (1981), pp. 53-56.
Bitran G.R., Magnanti T.L., The structure of admissible points with respect to cone dominance, J. Optim. Theory Appl., 29 (1979), pp. 573-614.
Dantzig G.B., Linear programming and extensions, Princenton University Press, Princenton, New-Jersey, 1963.
Giorgi G., Guerraggio A., Various types of invex functions, dipartimento di Richerche Aziendali, Universita di Pavia, 1994.
Girogi G., Mititelu S., Invexity in nonsmooth programming, Atii del Tredicesimo Convegno A.M.A.S.E.S., Verona, 1989, pp. 509-520.
Giorgi G., Molho E., Generalized invexity: Relationships with generalized convexity and applications to optimality and duality conditions, in Proceedings of the Workshop held in Pisa, 1992, "Generalized Concavity for Economic Applications", ed. Piera Mazzoleni, 1992, pp. 53-70.
Komlosi S., Generalized Monotonicity of generalized Derivatives, in Proceedings of the Workshop held in Pisa, 1992, "Generalized Concavity for Economic Applications", ed. Piera Mazzoleni, 1992, pp. 1-6.
Kortanek K.O., Evans J.P., Pseudo-concave Programmind and Lagrange regularity, Oper. Res., 15 (1967), pp. 882-891.
Mangasarian O.L., Nonlinear Programming, New York et al., Mc Graw Hill, 1969.
Martos B., Nonlinear Programming Theory and Methods, Amsterdam-Oxford, North-Holland, 1975.
Minch, R.A., Applications of symmetric derivatives in mathematical programming, Math. Prog., 1 (1971), pp. 307-320.
Mond B., Techniques for pseudo-monotonic programming, LaTrobe University, Pure Math. Res. Paper 82, 12, Melbourne, 1982.
Pini R., Schaible S., Some Invariance of Generalized Monotone Maps, in Proceedings of the Workshop held in Pisa, 1992, "Generalized Concavity for Economic Applications", ed. Piera Mazzoleni, 1992, pp. 87-88.
Tigan S., Sur une méthode de décomposition pour le probléme de programming monotone, Rev. Analyse Numér. Théor. Approx., 12 ,1 (1983), pp.347-354.
Tigan S., On the linearization techinque for quasi-monotonic optimization problems, Analyse Num. Théor. Approx., 12, 1 (1983), pp. 89-96.
Tigan S., A quasimonotonic max-min programming problem with linked constraints, Itinerant Seminar on Functional Equations, Approximation and Convexity, Cluj-Napoca, University, 1986, pp. 279-284.
Tigan S., On a quasimonotonic max-min problem, Analyse Numér. Théor., Approx., 1 (1990), pp. 85-91.
Tigan S., On duality for generalized pseudomonotonic programming, analyse Num. Théor. Approx., 20, 1-2 (1991), pp. 111-116.
Tigan S., On Kortanek-Evans optimality conditions for symmetric pseudoconcave programming. Itinerant Seminar on Functional Equations, Approximation and Convexity, Cluj-Napoca, University, 1992.
Tigan S., Sur le problème de la programmation vectorielle fractionnaire, Analyse Numér. Théor. Approx., 4, 1 (1975), pp. 99-103.
Tigan S., Linearization procedure and Kortanek-Evans optimality conditons for symmetric pseudoconcave programming, Analyse Num. Théor. Approx., 22, 1 (1993), pp. 113-120.
Tigan S., Optimality conditions for symmetric generalized convex programming and applications, Studii şi Cerc. Mat., 46, 4 (1994).
Weber R., Pseudomonotonic Multiobjective Programming, Discussion Papers B8203, Institute of Operations Research, Univ. of Saarland, Saarbruecken, 1982.
Weir T., and Mond B., Sufficient optimality conditions and duality for a pseudoconvex minimax problem, Chaiers du CERO, 33, 1-2 (1991), pp. 123-128.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2015 Journal of Numerical Analysis and Approximation Theory
This work is licensed under a Creative Commons Attribution 4.0 International License.
Open Access. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.