On the Chebyshev method for approximating the eigenvalues of linear operators

Authors

  • Emil Cătinaş Tiberiu Popoviciu, Institute of Numerical Analysis, Romanian Academy, Romania
  • Ion Păvăloiu Tiberiu Popoviciu, Institute of Numerical Analysis, Romanian Academy, Romania
Abstract views: 300

Abstract

Not available.

Downloads

Download data is not yet available.

References

M. Balázs, G. Goldner, Remarks Concerning the Divided Differences and Chord Method, (in Romanian), Rev. Numer. Anal. and Approx. Theory, 3, Fasc. 1 (1974), pp. 19-30.

J. E. Dennis, Jr., J. J., Moré, Quasi-Newton Methods, Motivation and theory, SIAM Rev., 19 (1977), pp. 46-89.

R. S. Dembo, S.C, Eisenstat, T Steihaug, Inexact Newton Methods,SIAM J. Nurner. Anal., 19 (2) (1982), pp. 400-408.

G Goldner, M. Balázs, On the Chord Melhod anf on a Modification of It for Solving Nonlinear Operator Equations, (in Rormanian), Stud. Cerc. Mat.,20 (7) (1968) pp.981-990.

I. Muntean, Functional analysis, (in Romanian), "Babeş-Bolyai", Cluj-Napoca, 1993.

J. M. Ortega, W. C. Rheinboldt, Iterative Solution of Nonlinear Equations in Several Variables, Academic Press, New York, 1970.

Downloads

Published

1996-08-01

How to Cite

Cătinaş, E., & Păvăloiu, I. (1996). On the Chebyshev method for approximating the eigenvalues of linear operators. Rev. Anal. Numér. Théor. Approx., 25(1), 43–56. Retrieved from https://ictp.acad.ro/jnaat/journal/article/view/1996-vol25-nos1-2-art5

Issue

Section

Articles