On the Chebyshev method for approximating the eigenvalues of linear operators

Authors

  • Emil Cătinaş Tiberiu Popoviciu, Institute of Numerical Analysis, Romanian Academy, Romania
  • Ion Păvăloiu Tiberiu Popoviciu, Institute of Numerical Analysis, Romanian Academy, Romania
Abstract views: 324

Abstract

Not available.

Downloads

References

M. Balázs, G. Goldner, Remarks Concerning the Divided Differences and Chord Method, (in Romanian), Rev. Numer. Anal. and Approx. Theory, 3, Fasc. 1 (1974), pp. 19-30.

J. E. Dennis, Jr., J. J., Moré, Quasi-Newton Methods, Motivation and theory, SIAM Rev., 19 (1977), pp. 46-89.

R. S. Dembo, S.C, Eisenstat, T Steihaug, Inexact Newton Methods,SIAM J. Nurner. Anal., 19 (2) (1982), pp. 400-408.

G Goldner, M. Balázs, On the Chord Melhod anf on a Modification of It for Solving Nonlinear Operator Equations, (in Rormanian), Stud. Cerc. Mat.,20 (7) (1968) pp.981-990.

I. Muntean, Functional analysis, (in Romanian), "Babeş-Bolyai", Cluj-Napoca, 1993.

J. M. Ortega, W. C. Rheinboldt, Iterative Solution of Nonlinear Equations in Several Variables, Academic Press, New York, 1970.

Downloads

Published

1996-08-01

Issue

Section

Articles

How to Cite

Cătinaş, E., & Păvăloiu, I. (1996). On the Chebyshev method for approximating the eigenvalues of linear operators. Rev. Anal. Numér. Théor. Approx., 25(1), 43-56. https://ictp.acad.ro/jnaat/journal/article/view/1996-vol25-nos1-2-art5