A Popoviciu-type mean value theorem
Abstract
Not available.
Downloads
References
H. H. Gonska and X. Zhou, Polynomial Approximation with Side Conditions: Recent Results and Open Problems, ln: Proceedings of the First International Colloquium on Numerical Analysis Plovdiv 1992, Zeist/The Netherlands: VSP International Science Publishes, 1993, pp. 61-71, https://doi.org/10.1017/s0252921100116914
M. lvan, A Mean Value Theorem in Topological Spaces,Itinerant Seminar on Functional Equations, Approximation and Convexity, Cluj-Napoca, 1982, pp. 145-149.
J. E. Pečaric and I. Raşa, On some linear inequalities, Studia Univ. Babeş-Bolyai, Math. XXXVIII, 4 (1993), pp. 31-33.
E. Popoviciu, Teoreme de medie din analiza matematică şi legătura lor cu teoria interpolării, Ed, Dacia, CIuj, 1972 (in Romanian).
T. Popoviciu, Introduction à la théorie des différences divisées, Bull. Math. de la Soc. Roumaine Sci. XLIl (1940), pp.65-78.
T. Popoviciu, Asupra restului în unele formule liniare de aproximare ale analizei, Studii şi cercetări de matematică X (1959), pp. 337-389.
. T. Popoviciu, Remarques sur le reste de certaines formules d'approximation d'une différence divisée par les dérivées, Buletinul Institutului Politehnic din Iaşi, Serie nouă XIII (XVII), 3-4 (1967), pp. 103-109.
Gh. Sireţchi, Calcul diferenţial şi integral, Vol.2, Ed. Ştiinţifică şi Enciclopedică, Bucharest, 1985.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2015 Journal of Numerical Analysis and Approximation Theory
This work is licensed under a Creative Commons Attribution 4.0 International License.
Open Access. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.