On the Heron's method for approximating the cubic root of a real number
Abstract
Not available.Downloads
References
G. Deslauries and S. Dubuc, Le calcul de la racine cubique selon Héron, Elemente der 51, I (1996), pp. 28-34.
M. Ostrowski, A Solution of Equations and Systems of Equation, Academic Press, New York-London, 1960.
I. Păvăloiu, On the monotonicity of the sequences of approximations obtained by Steffensen,s method, Mathematica (Cluj) 35 (58), 1 (1993), pp. 71-76.
T. Popoviciu, Sur la délimiation de l'erreur dasn l'approximation des racines d'une équation par interpolation linéaire ou quadratique, Rev. Roumaine Math. Pures Appl. XIII, 1 (1968), pp. 75-78.
Downloads
Published
Issue
Section
License
Copyright (c) 2015 Journal of Numerical Analysis and Approximation Theory
This work is licensed under a Creative Commons Attribution 4.0 International License.
Open Access. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.