On the Heron's method for approximating the cubic root of a real number

Authors

  • Dan Luca Tiberiu Popoviciu, Institute of Numerical Analysis, Romanian Academy
  • Ion Păvăloiu Tiberiu Popoviciu, Institute of Numerical Analysis, Romanian Academy

Abstract

Not available.

Downloads

Download data is not yet available.

References

G. Deslauries and S. Dubuc, Le calcul de la racine cubique selon Héron, Elemente der 51, I (1996), pp. 28-34.

M. Ostrowski, A Solution of Equations and Systems of Equation, Academic Press, New York-London, 1960.

I. Păvăloiu, On the monotonicity of the sequences of approximations obtained by Steffensen,s method, Mathematica (Cluj) 35 (58), 1 (1993), pp. 71-76.

T. Popoviciu, Sur la délimiation de l'erreur dasn l'approximation des racines d'une équation par interpolation linéaire ou quadratique, Rev. Roumaine Math. Pures Appl. XIII, 1 (1968), pp. 75-78.

Downloads

Published

1997-08-01

How to Cite

Luca, D., & Păvăloiu, I. (1997). On the Heron’s method for approximating the cubic root of a real number. Rev. Anal. Numér. Théor. Approx., 26(1), 103–108. Retrieved from https://ictp.acad.ro/jnaat/journal/article/view/1997-vol26-nos1-2-art15

Issue

Section

Articles