On the Heron's method for approximating the cubic root of a real number

Authors

  • Dan Luca Tiberiu Popoviciu, Institute of Numerical Analysis, Romanian Academy, Romania
  • Ion Păvăloiu Tiberiu Popoviciu, Institute of Numerical Analysis, Romanian Academy, Romania
Abstract views: 259

Abstract

Not available.

Downloads

Download data is not yet available.

References

G. Deslauries and S. Dubuc, Le calcul de la racine cubique selon Héron, Elemente der 51, I (1996), pp. 28-34.

M. Ostrowski, A Solution of Equations and Systems of Equation, Academic Press, New York-London, 1960.

I. Păvăloiu, On the monotonicity of the sequences of approximations obtained by Steffensen,s method, Mathematica (Cluj) 35 (58), 1 (1993), pp. 71-76.

T. Popoviciu, Sur la délimiation de l'erreur dasn l'approximation des racines d'une équation par interpolation linéaire ou quadratique, Rev. Roumaine Math. Pures Appl. XIII, 1 (1968), pp. 75-78.

Downloads

Published

1997-08-01

How to Cite

Luca, D., & Păvăloiu, I. (1997). On the Heron’s method for approximating the cubic root of a real number. Rev. Anal. Numér. Théor. Approx., 26(1), 103–108. Retrieved from https://ictp.acad.ro/jnaat/journal/article/view/1997-vol26-nos1-2-art15

Issue

Section

Articles