Reminder on the history of spline functions

Authors

  • G. Micula "Babeş-Bolyai" University, Cluj-Napoca, Romania
  • Maria Micula "Babeş-Bolyai" University, Cluj-Napoca, Romania
Abstract views: 206

Abstract

Not available.

Downloads

Download data is not yet available.

References

S. Bochner, Fourier Analysis, Princeton University Lectures, 1936-1937.

B. D. Bojanov, H. A. Hakopian and A. A. Sahakian, Spline Functions and Multivariate Interpolations, Kluwer Acad. Publ., Dordrecht, 1993, https://doi.org/10.1007/978-94-015-8169-1

C. de Boor, A Practical Guide ta Splines, Springer, New York, 1978, https://doi.org/10.1007/978-1-4612-6333-3

C. do Boor, Splines and linear combinations of B-splines. A survey, ln: Approximation Theory, II, G. G. Loranz C. K. Chui and L. L. Schumaker (Eds), Academic Press, New York, 1976.

P.L.. Butzer, M. Schrmidt and E. L. Stark, Observtions on the history of central B-splines, Archives for History of Exact Sciences 39 (1989), pp. 137-156.

H.B. Curry and I. J. Schoenberg, On Pólya distribution functions IV: The fundamental spline funcitons and their limits, J. d'Analyse Math. 17 (1966), pp. 71-107, https://doi.org/10.1007/bf02788653

J. E. Fjeldstaad, Bemerking til Viggo Brun: Gauss fordelingslov, Norsk Matematisk Tidsk¡raft 19 (1937), pp. 69-71.

K. Fränz, Beiträge zur Berechnug des Verhältnisses von Signalspannung am Ausang von Empfängern, Elekt. Nachr.-Tech. 17 (1940), pp. 215-230.

T. N. E. Greville, The general theory of osculatory interpolation, Trans. actuar. Soc. Amer. 45 (1944), pp. 202-265.

D.V. Ionescu, Câteva formule de cuadratură mecanică, St. Cerc. Şt. Acad. RPR, Filiala Cluj (l951), pp. 16-37.

D. V.Ionescu, Cuadraturi numerica, Ed. Tehnică. Bucharest, 1957.

D.V. Ionescu, Diferenţe divizate, Ed. Academiei, Bucharest, 1978.

M. Lerch, Stanoveni jisteho mnohonasdsneho integralu, Casopis pro pestovani matematiky i fysiky (Prague) 37 (1908), pp. 225-230.

L. Maurer, Über die Mittelwerte des Funktionen eineri reellen Variablen, Math. Ann. 47 (1896), pp. 263-280, https://doi.org/10.1007/bf01447270

G. Micula, Funcţii spline şi aplicaţii, Ed. Tehnică, Bucharest, 1978 (in Romanian).

G. Micula, On "D.V. Ionescu method" in numerical analysis as a constructing method of spline functions, Rev. Roumaine Math. Pures Appl. 26 (1981), pp. 1131-1141.

G. Micula and R. Gorenflo, Theory and Applications of Spline Fucntions, Parts I-II, Preprint No. A-91-33, Freie Universität Berlin, Fachbereich Mathematik, Serie A, 1991.

T. Popoviciu, Notes sur les fonctions convexes d'ordre supérieur (IX), Bull. Math. Soc. Sci. Math. Roumaine 43 (1941), pp. 94-141.

T. Popoviciu, Sur le reste dans certaines formule linéaires d'approximation de l'analyse, Mathematica (Cluj), 1 (1959), pp. 95-142.

W. A. Quade and L. Collatz, Zue Interpolationstheorie der reellen periodischen Funktionen, S-B Preuss. Akad, Wiss. Phys.-Math. KL 30 (1938), pp. 382-429.

H. L. Reitz, On a certain low of probability of Laplace, Proc. Int. Congress, Toronto 2 (1928), pp. 795-799.

C. Runge, Theorie und Praxis der Reihen, Sammlung Schubert 31, Leipzig, 1904.

I. J. Schoenberg, Contribution to the problem of approximation of equidistant data by analytic functions. Part A - On the problem of smoothing of graduation. Part B - On the second problem of osculatory interpolation. A second class of analytic approximation formulae, Quart. Appl. Math. 4 (1946), pp. 45-99; 112-141.

I. J. Schoenberg, Cardinal Spline Interpolation, CBMS, 12, SIAM, Philadelphia, 1973.

I. J. Schoenberg, On spline interpolation at all integer points of the real axis, Mathematica (Cluj), 10 (1968), pp. 151-170.

L. L. Schumaker, Spline functions: Basic Theory, J. Wiley, New York, 1981.

A. Sommerfeld, Eine besonders anschauliche Albeitung des Gaussischen Fehlergestezes, Festschfift L. Boltzmann gewidmet zum 60. Geburtstage, 20 Februar 1904, Barth, Leipzig, 1904, pp. 849-859.

A. Sommerfeld, Über die Hauptschnitte eines polydimensionalen Würfels, Bull. Calcutta Math. Soc. 29 (1930), pp. 221-227.

J. V. Uspensky, Introduction to Mathematical Probability, McGraw Hill, New York-London, 1938.

Downloads

Published

1997-08-01

How to Cite

Micula, G., & Micula, M. (1997). Reminder on the history of spline functions. Rev. Anal. Numér. Théor. Approx., 26(1), 117–123. Retrieved from https://ictp.acad.ro/jnaat/journal/article/view/1997-vol26-nos1-2-art17

Issue

Section

Articles