On the closedness of sets with the fixed point property for contractions

Authors

  • Mira-Cristiana Anisiu Tiberiu Popoviciu, Institute of Numerical Analysis, Romanian Academy, Romania
  • Valeriu Anisiu "Babeş Bolyai" University, Cluj-Napoca, Romania

Keywords:

fixed point property, complete metric spaces, Banach spaces
Abstract views: 202

Abstract

It is proved by examples that there exist (connected) non-closed sets with the fixed point property for contractions in complete metric spaces. In a Banach space, a convex set with nonvoid interior having the fixed point property for contractions is necessarily closed.

Downloads

Download data is not yet available.

References

E. H. Connell, Properties of fixed point spaces, Proc. Amer. Math. Soc. 10 (1959), pp. 974-979.

T. K. Hu, On afixed point theorem for metric spaces, Amer. Math. Monthly 74 (1967), 436-437.

P. V. Subrahmanyan, Completeness and fixed points, Monatsch. für Math. 80 (1975), pp. 325-330.

I. A. Rus, Maximal Fixed Point Structures, "Zilele academice clujene", 18-23 Nov. 1996.

Downloads

Published

1997-08-01

How to Cite

Anisiu, M.-C., & Anisiu, V. (1997). On the closedness of sets with the fixed point property for contractions. Rev. Anal. Numér. Théor. Approx., 26(1), 13–17. Retrieved from https://ictp.acad.ro/jnaat/journal/article/view/1997-vol26-nos1-2-art2

Issue

Section

Articles