Duality for multiple right-hand choice pseudomonotonic programming


  • Ştefan Ţigan "Iuliu Haţieganu" University of Medicine, Cluj-Napoca, Romania
  • I. M. Stancu-Minasian Romanian Academy, Romania


Not available.


Download data is not yet available.


C. R. Bector and P. L. Jolly, Programning problems with pseudomonotonic objectives, Math. Operationsforsch. und Statist., ser. Optimization 15, 2 (1984), pp.217--229.

B. D. Craven, Invex functions and duality, J. Austral. Math. Soc. 24 (1981), pp. 357-366.

G. Giorgio and E. Mohlo, Generalized invexity: relationships with generalized convexity and applciations to optimality and duality conditions, In: Proc. of the Workshop Held in Pisa (Italy), P. Mazzoleni (Ed.), Generalized concavity for economic applications, 1992, pp. 53-70.

D. Granot, F. Granot and E. L. Johnson, duality and pricing in multiple right-hand choice linear programming problems, Mathematics of Oper. Res. 7, 4 (1982), pp. 545-556.

M.A. Hanson, On sufficiency of Kuhn-Tucker conditions, J. Math. Anal. Appl. 80 (1981), pp. 545-550.

E.L. Johnson, Integer prograrmming with continuous variables, Report No. 7418-OR, Institut für Ökonometrie und Operations Research, Bonn, 1974.

K.O. Kortanek and J. P. Evans, Pseudo-concave programming and Lagrange regularity, Opns. Res. 15 (1967), pp. 882-891.

B. Martos, Nonlinear programming, North-Holland Publications co.,1975.

B. Mond, Techniques for Pseudo-monotonic Prograrmming, Pure Math. Roe. Paper No. 82-12, LaTrobe University, Melbourne, 1982.

V. N. Patkar and I. M. Stancu-Minasian, Duality in disjunctive linear fractional programming, European J. Oper. Res. 21 (1985), pp. 101-105.

E. Popoviciu, Sur une allure de quasi-convexité d'ordre supérieur, Rev. Anal. Numér. Théorie Approximation 11, 1-2 (1982), pp. 129-137.

T. Popoviciu, Les fonctions convexes, Hermam, Paris, 1944 (in French).

Şt. Ţigan, On the linearization technique for quasi-montonic optimization problems, Rev. Anal. Numér. Théorie Approximation 12, 1 (1983), pp. 89-96.

Şt. Ţigan, On duality for generalized pseudomonotonic programming, Rev. Anal. Numér. Théorie Approximation 20, 1-2 (1991), pp. 111-116.

Şt. Ţigan, Optimality conditions for symmetric generalized convex prograrmming and applications, Studii şi Cercet. Mat. 46, 4 (1994), pp. 487-500.

Şt, Ţigan and I. M. Stancu-Minasian, A Note on Duality in Multiple Right-hand Choice Pseudo-monotonic Programming, Proceedings of the Itinoeant Seminar on Functional Equations, Approximation and Convexity, Cluj-Napca, 1996, pp. 155-160.




How to Cite

Ţigan, Ştefan, & Stancu-Minasian, I. M. (1997). Duality for multiple right-hand choice pseudomonotonic programming. Rev. Anal. Numér. Théor. Approx., 26(1), 229–235. Retrieved from https://ictp.acad.ro/jnaat/journal/article/view/1997-vol26-nos1-2-art31