On the Bohr-Mollerup-Artin characterization of the Gamma function
Abstract
Not available.
Downloads
References
E. Artin, Einführung in die Theorie der Gammafunktion, Teubner, Lepizig, 1931.
H. Bohr and J. Mollerup, Locrebog i Mathematik Analyse III, Kopenhagen, 1922, pp. 149-164.
N. Bourbaki, Éléments de Mathématique, Book IV, Chapter VII: La fonction gamma, Paris, 1951.
P. J. Davis, Leonhard Euler's integral, A historical profile of the gamma function, Amer. Math. Monthly 66 (1959), pp. 849-869.
F. John, Special solutions of certain difference equations, Acta Math. 71 (1939), pp. 175-189.
R. Leipnik and R. Oberg, Subvex functions and Bohr's uniqueness theorem, Amer. Math. Monthly 74 (1967), pp. 1093-1094.
A. E. Mayer, Konvexe Lösung der Funktionalgleichung 1/f(x+1)=xf(x), Acta Math. 70 (1938), pp. 57-62.
A. W. Roberts and D. E. Varberg, Convex Functions, Academic Press, New York, 1973.
R. Webster, Convexity, Oxford University Press, Oxford, 1994.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2015 Journal of Numerical Analysis and Approximation Theory
This work is licensed under a Creative Commons Attribution 4.0 International License.
Open Access. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.