On the Bohr-Mollerup-Artin characterization of the Gamma function

Authors

  • Roger Webster Sheffield, England, United Kingdom

Abstract

Not available.

Downloads

Download data is not yet available.

References

E. Artin, Einführung in die Theorie der Gammafunktion, Teubner, Lepizig, 1931.

H. Bohr and J. Mollerup, Locrebog i Mathematik Analyse III, Kopenhagen, 1922, pp. 149-164.

N. Bourbaki, Éléments de Mathématique, Book IV, Chapter VII: La fonction gamma, Paris, 1951.

P. J. Davis, Leonhard Euler's integral, A historical profile of the gamma function, Amer. Math. Monthly 66 (1959), pp. 849-869.

F. John, Special solutions of certain difference equations, Acta Math. 71 (1939), pp. 175-189.

R. Leipnik and R. Oberg, Subvex functions and Bohr's uniqueness theorem, Amer. Math. Monthly 74 (1967), pp. 1093-1094.

A. E. Mayer, Konvexe Lösung der Funktionalgleichung 1/f(x+1)=xf(x), Acta Math. 70 (1938), pp. 57-62.

A. W. Roberts and D. E. Varberg, Convex Functions, Academic Press, New York, 1973.

R. Webster, Convexity, Oxford University Press, Oxford, 1994.

Downloads

Published

1997-08-01

How to Cite

Webster, R. (1997). On the Bohr-Mollerup-Artin characterization of the Gamma function. Rev. Anal. Numér. Théor. Approx., 26(1), 249–258. Retrieved from https://ictp.acad.ro/jnaat/journal/article/view/1997-vol26-nos1-2-art33

Issue

Section

Articles