On the Bohr-Mollerup-Artin characterization of the Gamma function

Authors

  • Roger Webster Sheffield, England, United Kingdom
Abstract views: 211

Abstract

Not available.

Downloads

Download data is not yet available.

References

E. Artin, Einführung in die Theorie der Gammafunktion, Teubner, Lepizig, 1931.

H. Bohr and J. Mollerup, Locrebog i Mathematik Analyse III, Kopenhagen, 1922, pp. 149-164.

N. Bourbaki, Éléments de Mathématique, Book IV, Chapter VII: La fonction gamma, Paris, 1951.

P. J. Davis, Leonhard Euler's integral, A historical profile of the gamma function, Amer. Math. Monthly 66 (1959), pp. 849-869.

F. John, Special solutions of certain difference equations, Acta Math. 71 (1939), pp. 175-189.

R. Leipnik and R. Oberg, Subvex functions and Bohr's uniqueness theorem, Amer. Math. Monthly 74 (1967), pp. 1093-1094.

A. E. Mayer, Konvexe Lösung der Funktionalgleichung 1/f(x+1)=xf(x), Acta Math. 70 (1938), pp. 57-62.

A. W. Roberts and D. E. Varberg, Convex Functions, Academic Press, New York, 1973.

R. Webster, Convexity, Oxford University Press, Oxford, 1994.

Downloads

Published

1997-08-01

How to Cite

Webster, R. (1997). On the Bohr-Mollerup-Artin characterization of the Gamma function. Rev. Anal. Numér. Théor. Approx., 26(1), 249–258. Retrieved from https://ictp.acad.ro/jnaat/journal/article/view/1997-vol26-nos1-2-art33

Issue

Section

Articles