The numerical solution of first order Volterra delay integro-differential equations by spline functions

Authors

  • G. Micula "Babeş Bolyai" University, Cluj-Napoca, Romania
  • A. Ayad Faculty of Education Ain Shams University Roxy, Cairo, Egypt
Abstract views: 176

Abstract

Not available.

Downloads

Download data is not yet available.

References

A. Ayad, Spline approximation for second order Fredholm integro-differential equation, Intern. J. Computer Math. (1997), pp. 1-3.

L. E. Garey and C. J. Gladwin, Direct numerical methods for nonlinear integro-differential equations, Intern. J. Computer. Math. 34 (1990), pp.59.

G. Micula, The numerical solution of volterra integro-differential equation by spline funcitons, Rev. Roumaine Math. Pures Appl. 20 (1975), pp. 349-358.

G. Micula and H. Akça, Numerical solution of differential equations with deviating argument using spline functions, Studia Univ. Babeş-Bolyai, Mathematica, 38 (1988), pp. 45-57.

G. Micula and H. Akça, Approximate solution of second order differential equations with deviating argument by spline functions, Rev. Anal. Numér. Théorie Approximation 30 (53) I (1988), pp. 37-46.

G. Micula and A. Ayad, A polynomial spline approximation method for solving Volterra integro-differential equations (to appear).

G. Micula and Graeme Fairweather, Direct numerical spline methods for first order Fredholm integro-differential equation, Rev. Anal. Numéri. Théorie Approximation 22 (53), I, (1993), pp. 59-66.

K. Schmidt, Delay and Functional Differential equations and Their applications, Academic Press, New York, 1972.

Downloads

Published

1998-02-01

How to Cite

Micula, G., & Ayad, A. (1998). The numerical solution of first order Volterra delay integro-differential equations by spline functions. Rev. Anal. Numér. Théor. Approx., 27(1), 117–125. Retrieved from https://ictp.acad.ro/jnaat/journal/article/view/1998-vol27-no1-art13

Issue

Section

Articles