Asymptotic approximation with Stancu Beta operators

Authors

  • Ulrich Abel Wettenberg, Germany

Keywords:

Stancu beta operators, asymptotic approximation, asymptotic expansion, Stirling numbers of the first and second kind, reciprocal factorials
Abstract views: 226

Abstract

The concern of this paper is a beta type operator \(L_n\) recently introduced by D.D. Stancu.
We present the complete asymptotic expansion for \(L_n\) as \(n\) tends to infinity.
All coefficients of \(n^{-k} \ (k=1,2, \ldots)\) are calculated explicitly in terms of Stirling numbers of the first and second kind.
Moreover, we give an asymptotic expansion for \(L_n\) into a series of reciprocal factorials.

Downloads

Download data is not yet available.

References

U. Abel, The moments for the Meyer-König and Zeller operators, J. Approx. Theory, 82 (1995), pp. 352-361, https://doi.org/10.1006/jath.1995.1084

U. Abel, On the asymptotic approximation with operators of Bleimann, Butzer and Hahn, Indag. Math., New Ser., 7 (1996), pp. 1-9, https://doi.org/10.1016/0019-3577(96)88653-8

U. Abel, The complete asymptotic expansion for the Meyer-König and Zeller operators, J. Math. Anal. Appl., 208 (1997), pp. 109-119,https://doi.org/10.1006/jmaa.1997.5295

U. Abel, The asymptotic expansion for the Stancu operators, submitted.

U. Abel, Asymptotic approximation with Kantorovich polynomials, submitted.

J. A. Adell and J. de la Cal, On a Bernstein-type operator associated with the inverse Polya-Eggenberger distribution, Rend. Circolo Matem. Palermo, Ser. II, Nr. 33 (1993), pp. 143-154.

F. Altomare and M. Campiti, "Korovkin-type approximation theory and its applications," Walter de Gruyter, Berlin, New York, 1994, https://doi.org/10.1515/9783110884586

S. N. Bernstein, Complément à l'article de E. Voronowskaja, Dokl. Akad. Nauk USSR, 4 (1932), pp. 86-92.

R. A. DeVore and G. G. Lorentz, "Constructive approximation", Springer, Berlin, Heidelberg 1993, https://doi.org/10.1007/978-3-662-02888-9

C. Jordan, "Calculus of finite differences," Chelsea, New York, 1965.

M. K. Khan, Approximation properties of beta operators, Progress in Approx. Theory, Academic Press, New York, 1991, pp. 483-495.

G. G. Lorentz, "Bernstein polynomials," University of Toronto Press, Toronto, 1953.

A. Lupaş, "Die Folge der Beta-Operatoren," Dissertation, Universität Stuttgart, 1972.

G. Mühlbach, Verallgemeinerungen der Bernstein-und der Lagrange-Polynome. Bemerkungen zu einer Klasse linearer Polynomoperatoren von D. D. Stancu, Rev. Roumaine Math. Pures Appl., 15 (1970), pp. 1235-1252.

P. C. Sikkema, On some linear positive operators, Indag. Math., 32 (1970), pp. 327-337, https://doi.org/10.1016/s1385-7258(70)80037-3

P. C. Sikkema, On the asymptotic approximation with operators of Meyer-König and Zeller, Indag. Math., 32 (1970), pp. 428-440, https://doi.org/10.1016/s1385-7258(70)80047-6

D. D. Stancu, On the beta approximating operators of second kind, Rev. Anal. Numér. Théor. Approx., 24 (1995), pp. 231-239,https://ictp.acad.ro/jnaat/journal/article/view/1995-vol24-nos1-2-art26

R. Upreti, Approximation properties of Beta operators, J. Approx. Theory, 45 (1985), pp. 85-89, https://doi.org/10.1016/0021-9045(85)90036-x

E. V. Voronovskaja, Détermination de la forme asymptotique de l' approximation des fonctions par les polynômes de S. Bernstein, Dokl. Akad. Nauk. SSSR, A (1932), pp. 79-85.

Downloads

Published

1998-02-01

How to Cite

Abel, U. (1998). Asymptotic approximation with Stancu Beta operators. Rev. Anal. Numér. Théor. Approx., 27(1), 5–13. Retrieved from https://ictp.acad.ro/jnaat/journal/article/view/1998-vol27-no1-art2

Issue

Section

Articles