Return to Article Details Asymptotic approximation with Stancu Beta operators

REVUE D'ANALYSE NUMÉRIQUE ET DE THÉORIE DE L'APPROXIMATION

Rev. Anal. Numér. Théor. Approx., vol. 27 (1998) no. 1, pp. 5-13
ictp.acad.ro/jnaat

ASYMPTOTIC APPROXIMATION
WITH STANCU BETA OPERATORS

ULRICH ABELDedicated to Prof. Dr. D. D. Stancu on the occasion of his 70th birthday

Abstract

The concern of this paper is a beta type operator L n L n L_(n)L_{n}Ln recently introduced by D. D. Stancu. We present the complete asymptotic expansion for L n L n L_(n)L_{n}Ln as n n nnn tends to infinity. All coefficients of n k ( k = 1 , 2 , ) n k ( k = 1 , 2 , ) n^(-k)(k=1,2,dots)n^{-k}(k=1,2, \ldots)nk(k=1,2,) are calculated explicitly in terms of Stirling numbers of the first and second kind. Moreover, we give an asymptotic expansion for L n L n L_(n)L_{n}Ln into a series of reciprocal factorials.

MSC 2000. 41A36.

1. INTRODUCTION

In his recent paper [17] D. D. Stancu introduced a new beta operator of second kind L n L n L_(n)L_{n}Ln associating, for n N n N n inNn \in \mathbb{N}nN, with each f M [ 0 , ) f M [ 0 , ) f in M[0,oo)f \in M[0, \infty)fM[0,)
L n ( f ; x ) L n ( f ( ) ; x ) (1) = 1 B ( n x , n + 1 ) 0 f ( t ) t n x 1 ( 1 + t ) n x + n + 1 d t ( x ( 0 , ) ) L n ( f ; x ) L n ( f ( ) ; x ) (1) = 1 B ( n x , n + 1 ) 0 f ( t ) t n x 1 ( 1 + t ) n x + n + 1 d t ( x ( 0 , ) ) {:[L_(n)(f;x)-=L_(n)(f(*);x)],[(1)=(1)/(B(nx,n+1))int_(0)^(oo)f(t)(t^(nx-1))/((1+t)^(nx+n+1))dt quad(x in(0","oo))]:}\begin{align*} L_{n}(f ; x) & \equiv L_{n}(f(\cdot) ; x) \\ & =\frac{1}{B(n x, n+1)} \int_{0}^{\infty} f(t) \frac{t^{n x-1}}{(1+t)^{n x+n+1}} d t \quad(x \in(0, \infty)) \tag{1} \end{align*}Ln(f;x)Ln(f();x)(1)=1B(nx,n+1)0f(t)tnx1(1+t)nx+n+1dt(x(0,))
where M [ 0 , ) M [ 0 , ) M[0,oo)M[0, \infty)M[0,) denotes the space of bounded and locally integrable functions on [ 0 , + ) [ 0 , + ) [0,+oo)[0,+\infty)[0,+). Actually, L n L n L_(n)L_{n}Ln is applicable to functions of polynomial growth if we restrict ourselves to n n 0 n n 0 n >= n_(0)n \geq n_{0}nn0 with n 0 N n 0 N n_(0)inNn_{0} \in \mathbb{N}n0N sufficiently great.
The operators (1) are constructed, roughly speaking, by applying a beta second kind transform T p , q T p , q T_(p,q)T_{p, q}Tp,q to the Baskakov operators
(2) B n ( f ; x ) = k = 0 ( n + k 1 k ) x k ( 1 + x ) n + k f ( k n ) ( x ( 0 , ) ) (2) B n ( f ; x ) = k = 0 ( n + k 1 k ) x k ( 1 + x ) n + k f k n ( x ( 0 , ) ) {:(2)B_(n)(f;x)=sum_(k=0)^(oo)((n+k-1)/(k))x^(k)(1+x)^(n+k)f((k)/(n))quad(x in(0","oo)):}\begin{equation*} B_{n}(f ; x)=\sum_{k=0}^{\infty}\binom{n+k-1}{k} x^{k}(1+x)^{n+k} f\left(\frac{k}{n}\right) \quad(x \in(0, \infty)) \tag{2} \end{equation*}(2)Bn(f;x)=k=0(n+k1k)xk(1+x)n+kf(kn)(x(0,))
and then choosing p = n x p = n x p=nxp=n xp=nx and q = n + 1 q = n + 1 q=n+1q=n+1q=n+1.
The L n L n L_(n)L_{n}Ln are positive linear operators reproducing linear functions. It is mentioned in [17] that L n L n L_(n)L_{n}Ln is distinct from the other beta type operators considered earlier in the papers [ 14 , 13 , 18 , 11 , 6 ] [ 14 , 13 , 18 , 11 , 6 ] [14,13,18,11,6][14,13,18,11,6][14,13,18,11,6].
Furthermore, D. D. Stancu gave estimations for the degree of approximation by using the moduli of continuity of first and second orders. He established also an asymptotic formula of Voronovskaja-type
(3) lim n n ( ( L n f ) ( x ) f ( x ) ) = x ( 1 + x ) 2 f ( x ) (3) lim n n L n f ( x ) f ( x ) = x ( 1 + x ) 2 f ( x ) {:(3)lim_(n rarr oo)n((L_(n)f)(x)-f(x))=(x(1+x))/(2)f^('')(x):}\begin{equation*} \lim _{n \rightarrow \infty} n\left(\left(L_{n} f\right)(x)-f(x)\right)=\frac{x(1+x)}{2} f^{\prime \prime}(x) \tag{3} \end{equation*}(3)limnn((Lnf)(x)f(x))=x(1+x)2f(x)
for all f M [ 0 , ) f M [ 0 , ) f in M[0,oo)f \in M[0, \infty)fM[0,) admitting a derivative of second order at x ( x > 0 ) x ( x > 0 ) x(x > 0)x(x>0)x(x>0). The first result of this type was given by Voronovskaja [19] for the classical Bernstein polynomials and then generalized by Bernstein [8]. It should be worth noting that the right-hand term of Eq. (3) is the same as for the Baskakov operators (2).
The purpose of this paper is to present the complete asymptotic expansion for the operators (1) in the form
(4) ( L n f ) ( x ) f ( x ) + k = 1 a k ( f ; x ) n k ( n ) , (4) L n f ( x ) f ( x ) + k = 1 a k ( f ; x ) n k ( n ) , {:(4)(L_(n)f)(x)∼f(x)+sum_(k=1)^(oo)a_(k)(f;x)n^(-k)quad(n rarr oo)",":}\begin{equation*} \left(L_{n} f\right)(x) \sim f(x)+\sum_{k=1}^{\infty} a_{k}(f ; x) n^{-k} \quad(n \rightarrow \infty), \tag{4} \end{equation*}(4)(Lnf)(x)f(x)+k=1ak(f;x)nk(n),
provided f f fff possesses derivatives of sufficiently high order at x ( x > 0 ) x ( x > 0 ) x(x > 0)x(x>0)x(x>0). Formula (4) means that
( L n f ) ( x ) = f ( x ) + k = 1 q a k ( f ; x ) n k + o ( n q ) ( n ) L n f ( x ) = f ( x ) + k = 1 q a k ( f ; x ) n k + o n q ( n ) (L_(n)f)(x)=f(x)+sum_(k=1)^(q)a_(k)(f;x)n^(-k)+o(n^(-q))quad(n rarr oo)\left(L_{n} f\right)(x)=f(x)+\sum_{k=1}^{q} a_{k}(f ; x) n^{-k}+o\left(n^{-q}\right) \quad(n \rightarrow \infty)(Lnf)(x)=f(x)+k=1qak(f;x)nk+o(nq)(n)
for all q N q N q inNq \in \mathbb{N}qN. The Voronovskaja-type result (3) is the special case q = 1 q = 1 q=1q=1q=1 with a 1 ( f ; x ) = ( 1 / 2 ) x ( 1 + x ) f ( x ) a 1 ( f ; x ) = ( 1 / 2 ) x ( 1 + x ) f ( x ) a_(1)(f;x)=(1//2)x(1+x)f^('')(x)a_{1}(f ; x)=(1 / 2) x(1+x) f^{\prime \prime}(x)a1(f;x)=(1/2)x(1+x)f(x). We give explicit expressions for all coefficients a k ( f ; x ) ( k = 1 , 2 , ) a k ( f ; x ) ( k = 1 , 2 , ) a_(k)(f;x)quad(k=1,2,dots)a_{k}(f ; x) \quad(k=1,2, \ldots)ak(f;x)(k=1,2,). The Stirling numbers of the first, resp. second, kind play an important role in our investigations.
It turns out that the representation of the moments L n e r L n e r L_(n)e_(r)L_{n} e_{r}Lner with e r ( x ) = x r ( r = 0 , 1 , 2 , ) e r ( x ) = x r ( r = 0 , 1 , 2 , ) e_(r)(x)=x^(r)(r=0,1,2,dots)e_{r}(x)= x^{r}(r=0,1,2, \ldots)er(x)=xr(r=0,1,2,) requires an infinite series. In order to avoid this drawback we, finally, derive a closed expression for the moments by means of a finite series of reciprocal factorials. This leads to a further asymptotic expansion of the form
(5) ( L n f ) ( x ) f ( x ) + k = 1 b k ( f ; x ) 1 n k ( n ) , (5) L n f ( x ) f ( x ) + k = 1 b k ( f ; x ) 1 n k _ ( n ) , {:(5)(L_(n)f)(x)∼f(x)+sum_(k=1)^(oo)b_(k)(f;x)(1)/(n^(k_))quad(n rarr oo)",":}\begin{equation*} \left(L_{n} f\right)(x) \sim f(x)+\sum_{k=1}^{\infty} b_{k}(f ; x) \frac{1}{n^{\underline{k}}} \quad(n \rightarrow \infty), \tag{5} \end{equation*}(5)(Lnf)(x)f(x)+k=1bk(f;x)1nk(n),
where n k n k _ n^(k_)n^{\underline{k}}nk denotes the falling factorial n k = n ( n 1 ) ( n k + 1 ) , n 0 = 1 n k _ = n ( n 1 ) ( n k + 1 ) , n 0 _ = 1 n^(k_)=n(n-1)cdots(n-k+1),n^(0_)=1n^{\underline{k}}=n(n-1) \cdots(n-k+1), n^{\underline{0}}=1nk=n(n1)(nk+1),n0=1.
We remark that in 1 , 3 , 2 , 4 1 , 3 , 2 , 4 1,3,2,41,3,2,41,3,2,4 the author gave the analogous results for the operators of Meyer-König and Zeller, for the operators of Bleimann, Butzer and Hahn and the Stancu operators, respectively.

2. THE MOMENTS FOR THE STANCU BETA OPERATOR

A change of variable replacing t t ttt by t / ( 1 t ) t / ( 1 t ) t//(1-t)t /(1-t)t/(1t) in the definition (1) yields
(6) ( L n f ) ( x ) = 1 B ( n x , n + 1 ) 0 1 f ( t 1 t ) t n x 1 ( 1 t ) n d t . (6) L n f ( x ) = 1 B ( n x , n + 1 ) 0 1 f t 1 t t n x 1 ( 1 t ) n d t . {:(6)(L_(n)f)(x)=(1)/(B(nx,n+1))int_(0)^(1)f((t)/(1-t))t^(nx-1)(1-t)^(n)dt.:}\begin{equation*} \left(L_{n} f\right)(x)=\frac{1}{B(n x, n+1)} \int_{0}^{1} f\left(\frac{t}{1-t}\right) t^{n x-1}(1-t)^{n} d t . \tag{6} \end{equation*}(6)(Lnf)(x)=1B(nx,n+1)01f(t1t)tnx1(1t)ndt.
For the monomials e r e r e_(r)e_{r}er we get
(7) ( L n e r ) ( x ) = B ( n x + r , n + 1 r ) B ( n x , n + 1 ) = ( n x ) r ¯ n r ( n > r 1 ) , (7) L n e r ( x ) = B ( n x + r , n + 1 r ) B ( n x , n + 1 ) = ( n x ) r ¯ n r _ ( n > r 1 ) , {:(7)(L_(n)e_(r))(x)=(B(nx+r,n+1-r))/(B(nx,n+1))=((nx)^( bar(r)))/(n^(r_))quad(n > r-1)",":}\begin{equation*} \left(L_{n} e_{r}\right)(x)=\frac{B(n x+r, n+1-r)}{B(n x, n+1)}=\frac{(n x)^{\bar{r}}}{n^{\underline{r}}} \quad(n>r-1), \tag{7} \end{equation*}(7)(Lner)(x)=B(nx+r,n+1r)B(nx,n+1)=(nx)r¯nr(n>r1),
where n k ¯ = n ( n + 1 ) ( n + k 1 ) , n 0 = 1 n k ¯ = n ( n + 1 ) ( n + k 1 ) , n 0 ¯ = 1 n^( bar(k))=n(n+1)cdots(n+k-1),n^( bar(0))=1n^{\bar{k}}=n(n+1) \cdots(n+k-1), n^{\overline{0}}=1nk¯=n(n+1)(n+k1),n0=1 is the rising factorial. Note that, in particular, L n e r = e r ( r = 0 , 1 ) L n e r = e r ( r = 0 , 1 ) L_(n)e_(r)=e_(r)(r=0,1)L_{n} e_{r}=e_{r}(r=0,1)Lner=er(r=0,1). For r 2 r 2 r >= 2r \geq 2r2, we take advantage of the
well-known identities
( n x ) r ¯ = j = 0 r ( 1 ) r j S r j ( n x ) j ( n x ) r ¯ = j = 0 r ( 1 ) r j S r j ( n x ) j (nx)^( bar(r))=sum_(j=0)^(r)(-1)^(r-j)S_(r)^(j)(nx)^(j)(n x)^{\bar{r}}=\sum_{j=0}^{r}(-1)^{r-j} S_{r}^{j}(n x)^{j}(nx)r¯=j=0r(1)rjSrj(nx)j
and
[ ( 1 1 n ) ( 1 2 n ) ( 1 r 1 n ) ] 1 = i = 0 σ r 1 + i r 1 n i ( n > r 1 ) 1 1 n 1 2 n 1 r 1 n 1 = i = 0 σ r 1 + i r 1 n i ( n > r 1 ) [(1-(1)/(n))(1-(2)/(n))cdots(1-(r-1)/(n))]^(-1)=sum_(i=0)^(oo)sigma_(r-1+i)^(r-1)n^(-i)quad(n > r-1)\left[\left(1-\frac{1}{n}\right)\left(1-\frac{2}{n}\right) \cdots\left(1-\frac{r-1}{n}\right)\right]^{-1}=\sum_{i=0}^{\infty} \sigma_{r-1+i}^{r-1} n^{-i} \quad(n>r-1)[(11n)(12n)(1r1n)]1=i=0σr1+ir1ni(n>r1)
(see, e.g., [10, §60, Eq. (2), p.175]) which imply, by Eq. (7),
( L n e r ) ( x ) = n r j = 0 r ( 1 ) j S r r j ( n x ) r j i = 0 σ r 1 + i r 1 n i (8) = x r + k = 1 n k j = 0 min { k , r } ( 1 ) j S r r j σ r 1 + k j r 1 x r j ( n > r 1 ) L n e r ( x ) = n r j = 0 r ( 1 ) j S r r j ( n x ) r j i = 0 σ r 1 + i r 1 n i (8) = x r + k = 1 n k j = 0 min { k , r } ( 1 ) j S r r j σ r 1 + k j r 1 x r j ( n > r 1 ) {:[(L_(n)e_(r))(x)=n^(-r)sum_(j=0)^(r)(-1)^(j)S_(r)^(r-j)(nx)^(r-j)sum_(i=0)^(oo)sigma_(r-1+i)^(r-1)n^(-i)],[(8)=x^(r)+sum_(k=1)^(oo)n^(-k)sum_(j=0)^(min{k,r})(-1)^(j)S_(r)^(r-j)sigma_(r-1+k-j)^(r-1)x^(r-j)quad(n > r-1)]:}\begin{align*} \left(L_{n} e_{r}\right)(x) & =n^{-r} \sum_{j=0}^{r}(-1)^{j} S_{r}^{r-j}(n x)^{r-j} \sum_{i=0}^{\infty} \sigma_{r-1+i}^{r-1} n^{-i} \\ & =x^{r}+\sum_{k=1}^{\infty} n^{-k} \sum_{j=0}^{\min \{k, r\}}(-1)^{j} S_{r}^{r-j} \sigma_{r-1+k-j}^{r-1} x^{r-j} \quad(n>r-1) \tag{8} \end{align*}(Lner)(x)=nrj=0r(1)jSrrj(nx)rji=0σr1+ir1ni(8)=xr+k=1nkj=0min{k,r}(1)jSrrjσr1+kjr1xrj(n>r1)
Recall that the Stirling numbers S j i S j i S_(j)^(i)S_{j}^{i}Sji and σ j i σ j i sigma_(j)^(i)\sigma_{j}^{i}σji of the first, resp. second, kind are defined by
x j = i = 0 j S j i x i and x j = i = 0 j σ j i x i ( j N 0 ) . x j _ = i = 0 j S j i x i  and  x j = i = 0 j σ j i x i _ j N 0 . x^(j_)=sum_(i=0)^(j)S_(j)^(i)x^(i)quad" and "quadx^(j)=sum_(i=0)^(j)sigma_(j)^(i)x^(i_)quad(j inN_(0)).x^{\underline{j}}=\sum_{i=0}^{j} S_{j}^{i} x^{i} \quad \text { and } \quad x^{j}=\sum_{i=0}^{j} \sigma_{j}^{i} x^{\underline{i}} \quad\left(j \in \mathbb{N}_{0}\right) .xj=i=0jSjixi and xj=i=0jσjixi(jN0).
Now we study the central moments
T n , s ( x ) = L n ( ( x ) s ; x ) ( s = 0 , 1 , 2 , ) T n , s ( x ) = L n ( x ) s ; x ( s = 0 , 1 , 2 , ) T_(n,s)(x)=L_(n)((*-x)^(s);x)quad(s=0,1,2,dots)T_{n, s}(x)=L_{n}\left((\cdot-x)^{s} ; x\right) \quad(s=0,1,2, \ldots)Tn,s(x)=Ln((x)s;x)(s=0,1,2,)
Since L n L n L_(n)L_{n}Ln reproduces linear functions we have T n , 0 ( x ) = 1 T n , 0 ( x ) = 1 T_(n,0)(x)=1T_{n, 0}(x)=1Tn,0(x)=1 and T n , 1 ( x ) = 0 T n , 1 ( x ) = 0 T_(n,1)(x)=0T_{n, 1}(x)=0Tn,1(x)=0. Application of the binomial formula yields
(9) T n , s ( x ) = r = 0 s ( s r ) ( x ) s r ( L n e r ) ( x ) (9) T n , s ( x ) = r = 0 s ( s r ) ( x ) s r L n e r ( x ) {:(9)T_(n,s)(x)=sum_(r=0)^(s)((s)/(r))(-x)^(s-r)(L_(n)e_(r))(x):}\begin{equation*} T_{n, s}(x)=\sum_{r=0}^{s}\binom{s}{r}(-x)^{s-r}\left(L_{n} e_{r}\right)(x) \tag{9} \end{equation*}(9)Tn,s(x)=r=0s(sr)(x)sr(Lner)(x)
and we get, by Eq. (8),
Proposition 1. For each x > 0 x > 0 x > 0x>0x>0 and s = 1 , 2 , s = 1 , 2 , s=1,2,dotss=1,2, \ldotss=1,2, the central moments T n , s T n , s T_(n,s)T_{n, s}Tn,s of the operators L n L n L_(n)L_{n}Ln possess, for n s n s n >= sn \geq sns, the representation
T n , s ( x ) = k = 1 n k j = 0 min { s , k } x s j r = max { j , 1 } s ( 1 ) s r + j ( s r ) S r r j σ r 1 + k j r 1 . T n , s ( x ) = k = 1 n k j = 0 min { s , k } x s j r = max { j , 1 } s ( 1 ) s r + j ( s r ) S r r j σ r 1 + k j r 1 . T_(n,s)(x)=sum_(k=1)^(oo)n^(-k)sum_(j=0)^(min{s,k})x^(s-j)sum_(r=max{j,1})^(s)(-1)^(s-r+j)((s)/(r))S_(r)^(r-j)sigma_(r-1+k-j)^(r-1).T_{n, s}(x)=\sum_{k=1}^{\infty} n^{-k} \sum_{j=0}^{\min \{s, k\}} x^{s-j} \sum_{r=\max \{j, 1\}}^{s}(-1)^{s-r+j}\binom{s}{r} S_{r}^{r-j} \sigma_{r-1+k-j}^{r-1} .Tn,s(x)=k=1nkj=0min{s,k}xsjr=max{j,1}s(1)sr+j(sr)Srrjσr1+kjr1.
In order to derive as our main result the complete asymptotic expansion of the Stancu beta operators we use a general approximation theorem for positive linear operators due to Sikkema [16, Theorems 1 and 2].
As in 15 let K [ q ] ( x ) K [ q ] ( x ) K^([q])(x)K^{[q]}(x)K[q](x) be the class of all functions f M [ 0 , ) f M [ 0 , ) f in M[0,oo)f \in M[0, \infty)fM[0,) which are q q qqq times differentiable at x ( x > 0 ) x ( x > 0 ) x(x > 0)x(x>0)x(x>0).
Theorem A. For q N q N q inNq \in \mathbb{N}qN and fixed x > 0 x > 0 x > 0x>0x>0 let A n : K [ 2 q ] ( x ) C ( 0 , ) A n : K [ 2 q ] ( x ) C ( 0 , ) A_(n):K^([2q])(x)rarr C(0,oo)A_{n}: K^{[2 q]}(x) \rightarrow C(0, \infty)An:K[2q](x)C(0,) be a sequence of positive linear operators. If
(10) A n ( ( x ) s ; x ) = O ( n ( s + 1 ) / 2 ) ( n ) ( s = 0 , 1 , , 2 q + 2 ) (10) A n ( x ) s ; x = O n ( s + 1 ) / 2 ( n ) ( s = 0 , 1 , , 2 q + 2 ) {:(10)A_(n)((*-x)^(s);x)=O(n^(-|__(s+1)//2__|))quad(n rarr oo)quad(s=0","1","dots","2q+2):}\begin{equation*} A_{n}\left((\cdot-x)^{s} ; x\right)=\mathcal{O}\left(n^{-\lfloor(s+1) / 2\rfloor}\right) \quad(n \rightarrow \infty) \quad(s=0,1, \ldots, 2 q+2) \tag{10} \end{equation*}(10)An((x)s;x)=O(n(s+1)/2)(n)(s=0,1,,2q+2)
then we have for each f K [ 2 q ] ( x ) f K [ 2 q ] ( x ) f inK^([2q])(x)f \in K^{[2 q]}(x)fK[2q](x)
(11) A n ( f ( ) ; x ) = s = 0 2 q f ( s ) ( x ) s ! A n ( ( x ) s ; x ) + o ( n q ) ( n ) (11) A n ( f ( ) ; x ) = s = 0 2 q f ( s ) ( x ) s ! A n ( x ) s ; x + o n q ( n ) {:(11)A_(n)(f(*);x)=sum_(s=0)^(2q)(f^((s))(x))/(s!)A_(n)((*-x)^(s);x)+o(n^(-q))quad(n rarr oo):}\begin{equation*} A_{n}(f(\cdot) ; x)=\sum_{s=0}^{2 q} \frac{f^{(s)}(x)}{s!} A_{n}\left((\cdot-x)^{s} ; x\right)+o\left(n^{-q}\right) \quad(n \rightarrow \infty) \tag{11} \end{equation*}(11)An(f();x)=s=02qf(s)(x)s!An((x)s;x)+o(nq)(n)
Furthermore, if f K [ 2 q + 2 ] ( x ) f K [ 2 q + 2 ] ( x ) f inK^([2q+2])(x)f \in K^{[2 q+2]}(x)fK[2q+2](x), the term o ( n q ) o n q o(n^(-q))o\left(n^{-q}\right)o(nq) in (11) can be replaced by O ( n ( q + 1 ) ) O n ( q + 1 ) O(n^(-(q+1)))\mathcal{O}\left(n^{-(q+1)}\right)O(n(q+1)).
In order to apply Theorem A we have to show that assumption (10) is valid for the operators L n L n L_(n)L_{n}Ln. For this reason we prove
Proposition 2. For each x > 0 x > 0 x > 0x>0x>0 and s = 0 , 1 , 2 , s = 0 , 1 , 2 , s=0,1,2,dotss=0,1,2, \ldotss=0,1,2, the central moments T n , s T n , s T_(n,s)T_{n, s}Tn,s of the operators L n L n L_(n)L_{n}Ln satisfy
(12) T n , s ( x ) = O ( n ( s + 1 ) / 2 ) ( n ) (12) T n , s ( x ) = O n ( s + 1 ) / 2 ( n ) {:(12)T_(n,s)(x)=O(n^(-|__(s+1)//2__|))quad(n rarr oo):}\begin{equation*} T_{n, s}(x)=\mathcal{O}\left(n^{-\lfloor(s+1) / 2\rfloor}\right) \quad(n \rightarrow \infty) \tag{12} \end{equation*}(12)Tn,s(x)=O(n(s+1)/2)(n)
Proof. The case s = 0 s = 0 s=0s=0s=0 is obvious. Let now s 1 s 1 s >= 1s \geq 1s1 and put
(13) Q ( k , s , j ) = r = max { j , 1 } s ( 1 ) r ( s r ) S r r j σ r 1 + k j r 1 (13) Q ( k , s , j ) = r = max { j , 1 } s ( 1 ) r ( s r ) S r r j σ r 1 + k j r 1 {:(13)Q(k","s","j)=sum_(r=max{j,1})^(s)(-1)^(r)((s)/(r))S_(r)^(r-j)sigma_(r-1+k-j)^(r-1):}\begin{equation*} Q(k, s, j)=\sum_{r=\max \{j, 1\}}^{s}(-1)^{r}\binom{s}{r} S_{r}^{r-j} \sigma_{r-1+k-j}^{r-1} \tag{13} \end{equation*}(13)Q(k,s,j)=r=max{j,1}s(1)r(sr)Srrjσr1+kjr1
By Proposition 1, it is sufficient to show that
Q ( k , s , j ) = 0 ( j = 0 , , min { s , k } ) Q ( k , s , j ) = 0 ( j = 0 , , min { s , k } ) Q(k,s,j)=0quad(j=0,dots,min{s,k})Q(k, s, j)=0 \quad(j=0, \ldots, \min \{s, k\})Q(k,s,j)=0(j=0,,min{s,k})
for all k N k N k inNk \in \mathbb{N}kN with k < ( s + 1 ) / 2 k < ( s + 1 ) / 2 k < |__(s+1)//2__|k<\lfloor(s+1) / 2\rfloork<(s+1)/2. The Stirling numbers of the first, resp. second, kind occurring in Eq. (13) possess the representations
(14) S r r j = α = 0 j C j , j α ( r j + α ) ( j = 0 , , r ) (14) S r r j = α = 0 j C j , j α ( r j + α ) ( j = 0 , , r ) {:(14)S_(r)^(r-j)=sum_(alpha=0)^(j)C_(j,j-alpha)((r)/(j+alpha))quad(j=0","dots","r):}\begin{equation*} S_{r}^{r-j}=\sum_{\alpha=0}^{j} C_{j, j-\alpha}\binom{r}{j+\alpha} \quad(j=0, \ldots, r) \tag{14} \end{equation*}(14)Srrj=α=0jCj,jα(rj+α)(j=0,,r)
resp.
(15) σ r 1 + r 1 = β = 0 C ¯ , β ( r 1 + + β ) ( r 1 , = 0 , 1 , 2 , ) (15) σ r 1 + r 1 = β = 0 C ¯ , β ( r 1 + + β ) ( r 1 , = 0 , 1 , 2 , ) {:(15)sigma_(r-1+ℓ)^(r-1)=sum_(beta=0)^(ℓ) bar(C)_(ℓ,ℓ-beta)((r-1+ℓ)/(ℓ+beta))quad(r >= 1","ℓ=0","1","2","dots):}\begin{equation*} \sigma_{r-1+\ell}^{r-1}=\sum_{\beta=0}^{\ell} \bar{C}_{\ell, \ell-\beta}\binom{r-1+\ell}{\ell+\beta} \quad(r \geq 1, \ell=0,1,2, \ldots) \tag{15} \end{equation*}(15)σr1+r1=β=0C¯,β(r1++β)(r1,=0,1,2,)
(see [10, p. 151, Eq. (5)], resp. [10, p. 171, Eq. (7)]). The coefficients C j , i C j , i C_(j,i)C_{j, i}Cj,i and C ¯ j , i C ¯ j , i bar(C)_(j,i)\bar{C}_{j, i}C¯j,i are independent on r r rrr and satisfy certain partial difference equations whose general solutions are unknown ([10, p. 150]). Some closed expressions for C j , i C j , i C_(j,i)C_{j, i}Cj,i and C ¯ j , i C ¯ j , i bar(C)_(j,i)\bar{C}_{j, i}C¯j,i can be found in [3].
In the case j = 0 j = 0 j=0j=0j=0 we have
Q ( k , s , j = 0 ) = r = 1 s ( 1 ) r ( s r ) σ r 1 + k r 1 Q ( k , s , j = 0 ) = r = 1 s ( 1 ) r ( s r ) σ r 1 + k r 1 Q(k,s,j=0)=sum_(r=1)^(s)(-1)^(r)((s)/(r))sigma_(r-1+k)^(r-1)Q(k, s, j=0)=\sum_{r=1}^{s}(-1)^{r}\binom{s}{r} \sigma_{r-1+k}^{r-1}Q(k,s,j=0)=r=1s(1)r(sr)σr1+kr1
By Eq. (15), σ r 1 + k r 1 σ r 1 + k r 1 sigma_(r-1+k)^(r-1)\sigma_{r-1+k}^{r-1}σr1+kr1 is a polynomial in r r rrr of degree 2 k 2 k <= 2k\leq 2 k2k without constant summand if k 1 k 1 k >= 1k \geq 1k1. Therefore, we have Q ( k , s , j = 0 ) = 0 Q ( k , s , j = 0 ) = 0 Q(k,s,j=0)=0Q(k, s, j=0)=0Q(k,s,j=0)=0 if 0 < 2 k < s 0 < 2 k < s 0 < 2k < s0<2 k<s0<2k<s.
On the other hand, if j 1 j 1 j >= 1j \geq 1j1 we insert (14) into Eq. (13) and get
Q ( k , s , j ) = α = 0 j C j , j α r = j s ( 1 ) r ( s r ) ( r j + α ) σ r 1 + k j r 1 = α = 0 j C j , j α s j ( j + α ) ! r = 0 s j ( 1 ) r + j ( s j r ) r α σ r 1 + k r 1 + j . Q ( k , s , j ) = α = 0 j C j , j α r = j s ( 1 ) r ( s r ) ( r j + α ) σ r 1 + k j r 1 = α = 0 j C j , j α s j _ ( j + α ) ! r = 0 s j ( 1 ) r + j ( s j r ) r α _ σ r 1 + k r 1 + j . {:[Q(k","s","j)=sum_(alpha=0)^(j)C_(j,j-alpha)sum_(r=j)^(s)(-1)^(r)((s)/(r))((r)/(j+alpha))sigma_(r-1+k-j)^(r-1)],[=sum_(alpha=0)^(j)C_(j,j-alpha)(s^(j_))/((j+alpha)!)sum_(r=0)^(s-j)(-1)^(r+j)((s-j)/(r))r^(alpha _)sigma_(r-1+k)^(r-1+j).]:}\begin{aligned} Q(k, s, j) & =\sum_{\alpha=0}^{j} C_{j, j-\alpha} \sum_{r=j}^{s}(-1)^{r}\binom{s}{r}\binom{r}{j+\alpha} \sigma_{r-1+k-j}^{r-1} \\ & =\sum_{\alpha=0}^{j} C_{j, j-\alpha} \frac{s^{\underline{j}}}{(j+\alpha)!} \sum_{r=0}^{s-j}(-1)^{r+j}\binom{s-j}{r} r^{\underline{\alpha}} \sigma_{r-1+k}^{r-1+j} . \end{aligned}Q(k,s,j)=α=0jCj,jαr=js(1)r(sr)(rj+α)σr1+kjr1=α=0jCj,jαsj(j+α)!r=0sj(1)r+j(sjr)rασr1+kr1+j.
Since r α σ r 1 + k r 1 + j r α _ σ r 1 + k r 1 + j r^(alpha _)sigma_(r-1+k)^(r-1+j)r^{\underline{\alpha}} \sigma_{r-1+k}^{r-1+j}rασr1+kr1+j is a polynomial in r r rrr of degree j + 2 ( k j ) j + 2 ( k j ) <= j+2(k-j)\leq j+2(k-j)j+2(kj) we have Q ( k , s , j ) = Q ( k , s , j ) = Q(k,s,j)=Q(k, s, j)=Q(k,s,j)= 0 if j + 2 ( k j ) < s j j + 2 ( k j ) < s j j+2(k-j) < s-jj+2(k-j)<s-jj+2(kj)<sj, i.e., if 2 k < s 2 k < s 2k < s2 k<s2k<s. Note that we only have to consider the case s j > 0 s j > 0 s-j > 0s-j>0sj>0. This completes the proof of Proposition 2.

3. THE COMPLETE ASYMPTOTIC EXPANSION

Combining Proposition 1, Theorem A and Proposition 2 we get our first main result.
Theorem 1. Let x > 0 , q N x > 0 , q N x > 0,q inNx>0, q \in \mathbb{N}x>0,qN and f K [ 2 q ] ( x ) f K [ 2 q ] ( x ) f inK^([2q])(x)f \in K^{[2 q]}(x)fK[2q](x). Then, the Stancu beta operators possess the asymptotic expansion
(16) ( L n f ) ( x ) = f ( x ) + k = 1 q a k ( f ; x ) n k + o ( n q ) ( n ) (16) L n f ( x ) = f ( x ) + k = 1 q a k ( f ; x ) n k + o n q ( n ) {:(16)(L_(n)f)(x)=f(x)+sum_(k=1)^(q)a_(k)(f;x)n^(-k)+o(n^(-q))quad(n rarr oo):}\begin{equation*} \left(L_{n} f\right)(x)=f(x)+\sum_{k=1}^{q} a_{k}(f ; x) n^{-k}+o\left(n^{-q}\right) \quad(n \rightarrow \infty) \tag{16} \end{equation*}(16)(Lnf)(x)=f(x)+k=1qak(f;x)nk+o(nq)(n)
where the coefficients a k ( f ; x ) a k ( f ; x ) a_(k)(f;x)a_{k}(f ; x)ak(f;x) are given by
(17) a k ( f ; x ) = s = 2 2 k f ( s ) ( x ) s ! j = 0 min { k , s } x s j r = max { j , 1 } s ( 1 ) s r + j ( s r ) S r r j σ r 1 + k j r 1 . (17) a k ( f ; x ) = s = 2 2 k f ( s ) ( x ) s ! j = 0 min { k , s } x s j r = max { j , 1 } s ( 1 ) s r + j ( s r ) S r r j σ r 1 + k j r 1 . {:(17)a_(k)(f;x)=sum_(s=2)^(2k)(f^((s))(x))/(s!)sum_(j=0)^(min{k,s})x^(s-j)sum_(r=max{j,1})^(s)(-1)^(s-r+j)((s)/(r))S_(r)^(r-j)sigma_(r-1+k-j)^(r-1).:}\begin{equation*} a_{k}(f ; x)=\sum_{s=2}^{2 k} \frac{f^{(s)}(x)}{s!} \sum_{j=0}^{\min \{k, s\}} x^{s-j} \sum_{r=\max \{j, 1\}}^{s}(-1)^{s-r+j}\binom{s}{r} S_{r}^{r-j} \sigma_{r-1+k-j}^{r-1} . \tag{17} \end{equation*}(17)ak(f;x)=s=22kf(s)(x)s!j=0min{k,s}xsjr=max{j,1}s(1)sr+j(sr)Srrjσr1+kjr1.
For the convenience of the reader we calculate the initial coefficients. As usual, we put X = x ( 1 + x ) X = x ( 1 + x ) X=x(1+x)X=x(1+x)X=x(1+x) (cf. [9, Theorem 1.1, p. 303]) and X = 1 + 2 x X = 1 + 2 x X^(')=1+2xX^{\prime}=1+2 xX=1+2x.
a 1 ( f ; x ) = 1 2 X f ( x ) a 1 ( f ; x ) = 1 2 X f ( x ) a_(1)(f;x)=(1)/(2)Xf^('')(x)a_{1}(f ; x)=\frac{1}{2} X f^{\prime \prime}(x)a1(f;x)=12Xf(x)
a 2 ( f ; x ) = 1 2 X f ( 2 ) ( x ) + 1 3 X X f ( 3 ) ( x ) + 1 8 X 2 f ( 4 ) ( x ) , a 3 ( f ; x ) = 1 2 X f ( 2 ) ( x ) + X X f ( 3 ) ( x ) + 1 4 X ( 6 X + 1 ) f ( 4 ) ( x ) + 1 6 X 2 X f ( 5 ) ( x ) + 1 48 X 3 f ( 6 ) ( x ) , a 4 ( f ; x ) = 1 2 X f ( 2 ) ( x ) + 7 3 X X f ( 3 ) ( x ) + 1 8 X ( 61 X + 12 ) f ( 4 ) ( x ) + 1 15 X X ( 31 X + 3 ) f ( 5 ) ( x ) + 1 144 X 2 ( 131 X + 26 ) f ( 6 ) ( x ) + 1 24 X 3 X f ( 7 ) ( x ) + 1 384 X 4 f ( 8 ) ( x ) . a 2 ( f ; x ) = 1 2 X f ( 2 ) ( x ) + 1 3 X X f ( 3 ) ( x ) + 1 8 X 2 f ( 4 ) ( x ) , a 3 ( f ; x ) = 1 2 X f ( 2 ) ( x ) + X X f ( 3 ) ( x ) + 1 4 X ( 6 X + 1 ) f ( 4 ) ( x ) + 1 6 X 2 X f ( 5 ) ( x ) + 1 48 X 3 f ( 6 ) ( x ) , a 4 ( f ; x ) = 1 2 X f ( 2 ) ( x ) + 7 3 X X f ( 3 ) ( x ) + 1 8 X ( 61 X + 12 ) f ( 4 ) ( x ) + 1 15 X X ( 31 X + 3 ) f ( 5 ) ( x ) + 1 144 X 2 ( 131 X + 26 ) f ( 6 ) ( x ) + 1 24 X 3 X f ( 7 ) ( x ) + 1 384 X 4 f ( 8 ) ( x ) . {:[a_(2)(f;x)=(1)/(2)Xf^((2))(x)+(1)/(3)XX^(')f^((3))(x)+(1)/(8)X^(2)f^((4))(x)","],[a_(3)(f;x)=(1)/(2)Xf^((2))(x)+XX^(')f^((3))(x)],[+(1)/(4)X(6X+1)f^((4))(x)+(1)/(6)X^(2)X^(')f^((5))(x)+(1)/(48)X^(3)f^((6))(x)","],[a_(4)(f;x)=(1)/(2)Xf^((2))(x)+(7)/(3)XX^(')f^((3))(x)+(1)/(8)X(61 X+12)f^((4))(x)],[+(1)/(15)XX^(')(31 X+3)f^((5))(x)+(1)/(144)X^(2)(131 X+26)f^((6))(x)],[+(1)/(24)X^(3)X^(')f^((7))(x)+(1)/(384)X^(4)f^((8))(x).]:}\begin{aligned} a_{2}(f ; x)= & \frac{1}{2} X f^{(2)}(x)+\frac{1}{3} X X^{\prime} f^{(3)}(x)+\frac{1}{8} X^{2} f^{(4)}(x), \\ a_{3}(f ; x)= & \frac{1}{2} X f^{(2)}(x)+X X^{\prime} f^{(3)}(x) \\ & +\frac{1}{4} X(6 X+1) f^{(4)}(x)+\frac{1}{6} X^{2} X^{\prime} f^{(5)}(x)+\frac{1}{48} X^{3} f^{(6)}(x), \\ a_{4}(f ; x)= & \frac{1}{2} X f^{(2)}(x)+\frac{7}{3} X X^{\prime} f^{(3)}(x)+\frac{1}{8} X(61 X+12) f^{(4)}(x) \\ & +\frac{1}{15} X X^{\prime}(31 X+3) f^{(5)}(x)+\frac{1}{144} X^{2}(131 X+26) f^{(6)}(x) \\ & +\frac{1}{24} X^{3} X^{\prime} f^{(7)}(x)+\frac{1}{384} X^{4} f^{(8)}(x) . \end{aligned}a2(f;x)=12Xf(2)(x)+13XXf(3)(x)+18X2f(4)(x),a3(f;x)=12Xf(2)(x)+XXf(3)(x)+14X(6X+1)f(4)(x)+16X2Xf(5)(x)+148X3f(6)(x),a4(f;x)=12Xf(2)(x)+73XXf(3)(x)+18X(61X+12)f(4)(x)+115XX(31X+3)f(5)(x)+1144X2(131X+26)f(6)(x)+124X3Xf(7)(x)+1384X4f(8)(x).
We mention that, in particular, the coefficient a 3 ( f ; x ) a 3 ( f ; x ) a_(3)(f;x)a_{3}(f ; x)a3(f;x) possesses the concise form
a 3 ( f ; x ) = 1 48 X ( d d x ) ( 4 ) ( X 2 f ( 2 ) ( x ) ) a 3 ( f ; x ) = 1 48 X d d x ( 4 ) X 2 f ( 2 ) ( x ) a_(3)(f;x)=(1)/(48)X((d)/(dx))^((4))(X^(2)f^((2))(x))a_{3}(f ; x)=\frac{1}{48} X\left(\frac{d}{d x}\right)^{(4)}\left(X^{2} f^{(2)}(x)\right)a3(f;x)=148X(ddx)(4)(X2f(2)(x))
For the sake of comparison we give without proof the initial terms of the asymptotic expansion of the Baskakov operators for x > 0 x > 0 x > 0x>0x>0 and f K [ 6 ] ( x ) f K [ 6 ] ( x ) f inK^([6])(x)f \in K^{[6]}(x)fK[6](x) :
B n ( f ; x ) = f ( x ) + 1 2 n X f ( x ) + 1 24 n 2 ( 4 X X f ( 3 ) ( x ) + 3 X 2 f ( 4 ) ( x ) ) + 1 48 n 3 ( 2 X ( 6 X + 1 ) f ( 4 ) ( x ) + 4 X 2 X f ( 5 ) ( x ) + X 3 f ( 6 ) ( x ) ) + o ( n 3 ) ( n ) B n ( f ; x ) = f ( x ) + 1 2 n X f ( x ) + 1 24 n 2 4 X X f ( 3 ) ( x ) + 3 X 2 f ( 4 ) ( x ) + 1 48 n 3 2 X ( 6 X + 1 ) f ( 4 ) ( x ) + 4 X 2 X f ( 5 ) ( x ) + X 3 f ( 6 ) ( x ) + o n 3 ( n ) {:[B_(n)(f;x)=f(x)+(1)/(2n)Xf^('')(x)+(1)/(24n^(2))(4XX^(')f^((3))(x)+3X^(2)f^((4))(x))],[+(1)/(48n^(3))(2X(6X+1)f^((4))(x)+4X^(2)X^(')f^((5))(x)+X^(3)f^((6))(x))],[+o(n^(-3))quad(n rarr oo)]:}\begin{aligned} B_{n}(f ; x)= & f(x)+\frac{1}{2 n} X f^{\prime \prime}(x)+\frac{1}{24 n^{2}}\left(4 X X^{\prime} f^{(3)}(x)+3 X^{2} f^{(4)}(x)\right) \\ & +\frac{1}{48 n^{3}}\left(2 X(6 X+1) f^{(4)}(x)+4 X^{2} X^{\prime} f^{(5)}(x)+X^{3} f^{(6)}(x)\right) \\ & +o\left(n^{-3}\right) \quad(n \rightarrow \infty) \end{aligned}Bn(f;x)=f(x)+12nXf(x)+124n2(4XXf(3)(x)+3X2f(4)(x))+148n3(2X(6X+1)f(4)(x)+4X2Xf(5)(x)+X3f(6)(x))+o(n3)(n)

4. THE COMPLETE ASYMPTOTIC EXPANSION INTO A SERIES OF RECIPROCAL FACTORIALS

Direct computation of the moments ( L n e r ) ( x ) = ( n x ) r ¯ / n r ( n > r 1 ) L n e r ( x ) = ( n x ) r ¯ / n r _ ( n > r 1 ) (L_(n)e_(r))(x)=(nx)^( bar(r))//n^(r_)quad(n > r-1)\left(L_{n} e_{r}\right)(x)=(n x)^{\bar{r}} / n^{\underline{r}} \quad(n>r-1)(Lner)(x)=(nx)r¯/nr(n>r1) as given in Eq. (7) yields
( L n e 1 ) ( x ) = x ( L n e 2 ) ( x ) = x 2 + x 2 + x n 1 ( L n e 3 ) ( x ) = x 3 + 3 x 3 + x 2 n 1 + 2 2 x 3 + 3 x 2 + x ( n 1 ) ( n 2 ) L n e 1 ( x ) = x L n e 2 ( x ) = x 2 + x 2 + x n 1 L n e 3 ( x ) = x 3 + 3 x 3 + x 2 n 1 + 2 2 x 3 + 3 x 2 + x ( n 1 ) ( n 2 ) {:[(L_(n)e_(1))(x)=x],[(L_(n)e_(2))(x)=x^(2)+(x^(2)+x)/(n-1)],[(L_(n)e_(3))(x)=x^(3)+3(x^(3)+x^(2))/(n-1)+2(2x^(3)+3x^(2)+x)/((n-1)(n-2))]:}\begin{aligned} & \left(L_{n} e_{1}\right)(x)=x \\ & \left(L_{n} e_{2}\right)(x)=x^{2}+\frac{x^{2}+x}{n-1} \\ & \left(L_{n} e_{3}\right)(x)=x^{3}+3 \frac{x^{3}+x^{2}}{n-1}+2 \frac{2 x^{3}+3 x^{2}+x}{(n-1)(n-2)} \end{aligned}(Lne1)(x)=x(Lne2)(x)=x2+x2+xn1(Lne3)(x)=x3+3x3+x2n1+22x3+3x2+x(n1)(n2)
These expressions suggest to study the expansion of the operators L n L n L_(n)L_{n}Ln into a series of reciprocal factorials. Proposition 3 exhibits the general expression for the moments.
Proposition 3. For r = 0 , 1 , 2 , r = 0 , 1 , 2 , r=0,1,2,dotsr=0,1,2, \ldotsr=0,1,2, the moments L n e r L n e r L_(n)e_(r)L_{n} e_{r}Lner of the operators L n L n L_(n)L_{n}Ln possess the representation
(18) ( L n + 1 e r ) ( x ) = x r + k = 1 r 1 ( 1 ) k n k j = 0 k x r j i = 0 k j ( 1 ) i ( r 1 j i ) S r r j σ r 1 j i r 1 k ( r 1 ) i , (18) L n + 1 e r ( x ) = x r + k = 1 r 1 ( 1 ) k n k _ j = 0 k x r j i = 0 k j ( 1 ) i ( r 1 j i ) S r r j σ r 1 j i r 1 k ( r 1 ) i , {:(18)(L_(n+1)e_(r))(x)=x^(r)+sum_(k=1)^(r-1)((-1)^(k))/(n^(k_))sum_(j=0)^(k)x^(r-j)sum_(i=0)^(k-j)(-1)^(i)((r-1-j)/(i))S_(r)^(r-j)sigma_(r-1-j-i)^(r-1-k)(r-1)^(i)",":}\begin{equation*} \left(L_{n+1} e_{r}\right)(x)=x^{r}+\sum_{k=1}^{r-1} \frac{(-1)^{k}}{n^{\underline{k}}} \sum_{j=0}^{k} x^{r-j} \sum_{i=0}^{k-j}(-1)^{i}\binom{r-1-j}{i} S_{r}^{r-j} \sigma_{r-1-j-i}^{r-1-k}(r-1)^{i}, \tag{18} \end{equation*}(18)(Ln+1er)(x)=xr+k=1r1(1)knkj=0kxrji=0kj(1)i(r1ji)Srrjσr1jir1k(r1)i,
n r n r n >= rn \geq rnr, where the sum k = 1 r 1 k = 1 r 1 sum_(k=1)^(r-1)\sum_{k=1}^{r-1}k=1r1 is to be read as 0 in the case r 1 r 1 r <= 1r \leq 1r1.
Proof. The case r = 0 r = 0 r=0r=0r=0 is obvious. Let r N r N r inNr \in \mathbb{N}rN and n r n r n >= rn \geq rnr. We take advantage of the identities
( n x ) r ¯ = j = 1 r ( 1 ) r j S r j ( n x ) j n j = n ( n r + 1 + r 1 ) j 1 = n i = 0 j 1 ( 1 ) i ( j 1 i ) ( r 1 ) j 1 i [ ( n r + 1 ) ] i [ ( n r + 1 ) ] i = k = 0 i σ i k [ ( n r + 1 ) ] k = k = 0 i σ i k ( 1 ) k ( n r + k ) k , ( n x ) r ¯ = j = 1 r ( 1 ) r j S r j ( n x ) j n j = n ( n r + 1 + r 1 ) j 1 = n i = 0 j 1 ( 1 ) i ( j 1 i ) ( r 1 ) j 1 i [ ( n r + 1 ) ] i [ ( n r + 1 ) ] i = k = 0 i σ i k [ ( n r + 1 ) ] k _ = k = 0 i σ i k ( 1 ) k ( n r + k ) k _ , {:[(nx)^( bar(r))=sum_(j=1)^(r)(-1)^(r-j)S_(r)^(j)(nx)^(j)],[n^(j)=n(n-r+1+r-1)^(j-1)=nsum_(i=0)^(j-1)(-1)^(i)((j-1)/(i))(r-1)^(j-1-i)[-(n-r+1)]^(i)],[[-(n-r+1)]^(i)=sum_(k=0)^(i)sigma_(i)^(k)[-(n-r+1)]^(k_)=sum_(k=0)^(i)sigma_(i)^(k)(-1)^(k)(n-r+k)^(k_)","]:}\begin{gathered} (n x)^{\bar{r}}=\sum_{j=1}^{r}(-1)^{r-j} S_{r}^{j}(n x)^{j} \\ n^{j}=n(n-r+1+r-1)^{j-1}=n \sum_{i=0}^{j-1}(-1)^{i}\binom{j-1}{i}(r-1)^{j-1-i}[-(n-r+1)]^{i} \\ {[-(n-r+1)]^{i}=\sum_{k=0}^{i} \sigma_{i}^{k}[-(n-r+1)]^{\underline{k}}=\sum_{k=0}^{i} \sigma_{i}^{k}(-1)^{k}(n-r+k)^{\underline{k}},} \end{gathered}(nx)r¯=j=1r(1)rjSrj(nx)jnj=n(nr+1+r1)j1=ni=0j1(1)i(j1i)(r1)j1i[(nr+1)]i[(nr+1)]i=k=0iσik[(nr+1)]k=k=0iσik(1)k(nr+k)k,
and therefore
n j n r = n i = 0 j 1 k = 0 i ( 1 ) i + k ( j 1 i ) σ i k ( r 1 ) j 1 i 1 n r k n j n r _ = n i = 0 j 1 k = 0 i ( 1 ) i + k ( j 1 i ) σ i k ( r 1 ) j 1 i 1 n r k _ (n^(j))/(n^(r_))=nsum_(i=0)^(j-1)sum_(k=0)^(i)(-1)^(i+k)((j-1)/(i))sigma_(i)^(k)(r-1)^(j-1-i)(1)/(n^(r-k_))\frac{n^{j}}{n^{\underline{r}}}=n \sum_{i=0}^{j-1} \sum_{k=0}^{i}(-1)^{i+k}\binom{j-1}{i} \sigma_{i}^{k}(r-1)^{j-1-i} \frac{1}{n^{\underline{r-k}}}njnr=ni=0j1k=0i(1)i+k(j1i)σik(r1)j1i1nrk
Combining these formulae with Eq. (7) we receive
( L n e r ) ( x ) = ( n x ) r ¯ n r = j = 0 r 1 ( 1 ) r j 1 S r j + 1 x j + 1 i = 0 j k = 0 i ( 1 ) i + k ( j i ) σ i k ( r 1 ) j i n n r k = k = 0 r 1 ( 1 ) k ( n 1 ) r 1 k j = k r 1 x j + 1 i = k j ( 1 ) r + i j 1 ( j i ) S r j + 1 σ i k ( r 1 ) j i L n e r ( x ) = ( n x ) r ¯ n r _ _ = j = 0 r 1 ( 1 ) r j 1 S r j + 1 x j + 1 i = 0 j k = 0 i ( 1 ) i + k ( j i ) σ i k ( r 1 ) j i n n r k _ = k = 0 r 1 ( 1 ) k ( n 1 ) r 1 k _ j = k r 1 x j + 1 i = k j ( 1 ) r + i j 1 ( j i ) S r j + 1 σ i k ( r 1 ) j i {:[(L_(n)e_(r))(x)=((nx)^( bar(r)))/(nr__)],[=sum_(j=0)^(r-1)(-1)^(r-j-1)S_(r)^(j+1)x^(j+1)sum_(i=0)^(j)sum_(k=0)^(i)(-1)^(i+k)((j)/(i))sigma_(i)^(k)(r-1)^(j-i)(n)/(nr-k_)],[=sum_(k=0)^(r-1)((-1)^(k))/((n-1)^(r-1-k_))sum_(j=k)^(r-1)x^(j+1)sum_(i=k)^(j)(-1)^(r+i-j-1)((j)/(i))S_(r)^(j+1)sigma_(i)^(k)(r-1)^(j-i)]:}\begin{aligned} \left(L_{n} e_{r}\right)(x) & =\frac{(n x)^{\bar{r}}}{n \underline{\underline{r}}} \\ & =\sum_{j=0}^{r-1}(-1)^{r-j-1} S_{r}^{j+1} x^{j+1} \sum_{i=0}^{j} \sum_{k=0}^{i}(-1)^{i+k}\binom{j}{i} \sigma_{i}^{k}(r-1)^{j-i} \frac{n}{n \underline{r-k}} \\ & =\sum_{k=0}^{r-1} \frac{(-1)^{k}}{(n-1)^{\underline{r-1-k}}} \sum_{j=k}^{r-1} x^{j+1} \sum_{i=k}^{j}(-1)^{r+i-j-1}\binom{j}{i} S_{r}^{j+1} \sigma_{i}^{k}(r-1)^{j-i} \end{aligned}(Lner)(x)=(nx)r¯nr=j=0r1(1)rj1Srj+1xj+1i=0jk=0i(1)i+k(ji)σik(r1)jinnrk=k=0r1(1)k(n1)r1kj=kr1xj+1i=kj(1)r+ij1(ji)Srj+1σik(r1)ji
which yields Eq. (18) after some manipulations.
By Eq. (9) and Proposition 3, we get for the central moments T n , s T n , s T_(n,s)T_{n, s}Tn,s of the operators L n L n L_(n)L_{n}Ln, for n + 1 s 1 n + 1 s 1 n+1 >= s >= 1n+1 \geq s \geq 1n+1s1,
T n + 1 , s ( x ) = = k = 1 s 1 ( 1 ) k n k j = 0 k x s j r = k + 1 s ( 1 ) s r ( s r ) i = 0 k j ( 1 ) i ( r 1 j i ) S r r j σ r 1 j i r 1 k ( r 1 ) i T n + 1 , s ( x ) = = k = 1 s 1 ( 1 ) k n k _ j = 0 k x s j r = k + 1 s ( 1 ) s r ( s r ) i = 0 k j ( 1 ) i ( r 1 j i ) S r r j σ r 1 j i r 1 k ( r 1 ) i {:[T_(n+1,s)(x)=],[=sum_(k=1)^(s-1)((-1)^(k))/(n^(k_))sum_(j=0)^(k)x^(s-j)sum_(r=k+1)^(s)(-1)^(s-r)((s)/(r))sum_(i=0)^(k-j)(-1)^(i)((r-1-j)/(i))S_(r)^(r-j)sigma_(r-1-j-i)^(r-1-k)(r-1)^(i)]:}\begin{aligned} & T_{n+1, s}(x)= \\ & =\sum_{k=1}^{s-1} \frac{(-1)^{k}}{n^{\underline{k}}} \sum_{j=0}^{k} x^{s-j} \sum_{r=k+1}^{s}(-1)^{s-r}\binom{s}{r} \sum_{i=0}^{k-j}(-1)^{i}\binom{r-1-j}{i} S_{r}^{r-j} \sigma_{r-1-j-i}^{r-1-k}(r-1)^{i} \end{aligned}Tn+1,s(x)==k=1s1(1)knkj=0kxsjr=k+1s(1)sr(sr)i=0kj(1)i(r1ji)Srrjσr1jir1k(r1)i
Thus, we receive as our second main result, by Theorem A and Proposition 2
Theorem 2. Let x > 0 , q N x > 0 , q N x > 0,q inNx>0, q \in \mathbb{N}x>0,qN and f K [ 2 q ] ( x ) f K [ 2 q ] ( x ) f inK^([2q])(x)f \in K^{[2 q]}(x)fK[2q](x). Then, the Stancu beta operators possess an asymptotic expansion into a reciprocal factorial series
(19) ( L n f ) ( x ) = f ( x ) + k = 1 q b k ( f ; x ) ( n 1 ) k + o ( n q ) ( n ) (19) L n f ( x ) = f ( x ) + k = 1 q b k ( f ; x ) ( n 1 ) k _ + o n q ( n ) {:(19)(L_(n)f)(x)=f(x)+sum_(k=1)^(q)(b_(k)(f;x))/((n-1)^(k_))+o(n^(-q))quad(n rarr oo):}\begin{equation*} \left(L_{n} f\right)(x)=f(x)+\sum_{k=1}^{q} \frac{b_{k}(f ; x)}{(n-1)^{\underline{k}}}+o\left(n^{-q}\right) \quad(n \rightarrow \infty) \tag{19} \end{equation*}(19)(Lnf)(x)=f(x)+k=1qbk(f;x)(n1)k+o(nq)(n)
where the coefficients b k ( f ; x ) b k ( f ; x ) b_(k)(f;x)b_{k}(f ; x)bk(f;x) are given by
(20) b k ( f ; x ) = = ( 1 ) k s = k + 1 2 k f ( s ) ( x ) s ! j = 0 k x s j r = k + 1 s ( 1 ) s r ( s r ) i = 0 k j ( 1 ) i ( r 1 j i ) S r r j σ r 1 j i r 1 k ( r 1 ) i (20) b k ( f ; x ) = = ( 1 ) k s = k + 1 2 k f ( s ) ( x ) s ! j = 0 k x s j r = k + 1 s ( 1 ) s r ( s r ) i = 0 k j ( 1 ) i ( r 1 j i ) S r r j σ r 1 j i r 1 k ( r 1 ) i {:[(20)b_(k)(f;x)=],[=(-1)^(k)sum_(s=k+1)^(2k)(f^((s))(x))/(s!)sum_(j=0)^(k)x^(s-j)sum_(r=k+1)^(s)(-1)^(s-r)((s)/(r))sum_(i=0)^(k-j)(-1)^(i)((r-1-j)/(i))S_(r)^(r-j)sigma_(r-1-j-i)^(r-1-k)(r-1)^(i)]:}\begin{align*} & b_{k}(f ; x)= \tag{20}\\ & =(-1)^{k} \sum_{s=k+1}^{2 k} \frac{f^{(s)}(x)}{s!} \sum_{j=0}^{k} x^{s-j} \sum_{r=k+1}^{s}(-1)^{s-r}\binom{s}{r} \sum_{i=0}^{k-j}(-1)^{i}\binom{r-1-j}{i} S_{r}^{r-j} \sigma_{r-1-j-i}^{r-1-k}(r-1)^{i} \end{align*}(20)bk(f;x)==(1)ks=k+12kf(s)(x)s!j=0kxsjr=k+1s(1)sr(sr)i=0kj(1)i(r1ji)Srrjσr1jir1k(r1)i
For the convenience of the reader we calculate the initial coefficients:
b 1 ( f ; x ) = 1 2 X f ( x ) b 2 ( f ; x ) = 1 3 X X f ( 3 ) ( x ) + 1 8 X 2 f ( 4 ) ( x ) b 3 ( f ; x ) = 1 8 X ( 9 X + 2 ) f ( 4 ) ( x ) + 1 6 X 2 X f ( 5 ) ( x ) + 1 48 X 3 f ( 6 ) ( x ) b 4 ( f ; x ) = 1 15 X X ( 16 X + 3 ) f ( 5 ) ( x ) + 1 144 X 2 ( 113 X + 26 ) f ( 6 ) ( x ) + 1 24 X 3 X f ( 7 ) ( x ) + 1 384 X 4 f ( 8 ) ( x ) b 5 ( f ; x ) = ( 1 6 X + 125 144 X 2 ( 5 X + 2 ) ) f ( 6 ) ( x ) + 1 120 X 2 X ( 109 X + 22 ) f ( 7 ) ( x ) + 1 576 X 3 ( 145 X + 34 ) f ( 8 ) ( x ) + 1 144 X 4 X f ( 9 ) ( x ) + 1 3840 X 5 f ( 10 ) ( x ) b 1 ( f ; x ) = 1 2 X f ( x ) b 2 ( f ; x ) = 1 3 X X f ( 3 ) ( x ) + 1 8 X 2 f ( 4 ) ( x ) b 3 ( f ; x ) = 1 8 X ( 9 X + 2 ) f ( 4 ) ( x ) + 1 6 X 2 X f ( 5 ) ( x ) + 1 48 X 3 f ( 6 ) ( x ) b 4 ( f ; x ) = 1 15 X X ( 16 X + 3 ) f ( 5 ) ( x ) + 1 144 X 2 ( 113 X + 26 ) f ( 6 ) ( x ) + 1 24 X 3 X f ( 7 ) ( x ) + 1 384 X 4 f ( 8 ) ( x ) b 5 ( f ; x ) = 1 6 X + 125 144 X 2 ( 5 X + 2 ) f ( 6 ) ( x ) + 1 120 X 2 X ( 109 X + 22 ) f ( 7 ) ( x ) + 1 576 X 3 ( 145 X + 34 ) f ( 8 ) ( x ) + 1 144 X 4 X f ( 9 ) ( x ) + 1 3840 X 5 f ( 10 ) ( x ) {:[b_(1)(f;x)=(1)/(2)Xf^('')(x)],[b_(2)(f;x)=(1)/(3)XX^(')f^((3))(x)+(1)/(8)X^(2)f^((4))(x)],[b_(3)(f;x)=(1)/(8)X(9X+2)f^((4))(x)+(1)/(6)X^(2)X^(')f^((5))(x)+(1)/(48)X^(3)f^((6))(x)],[b_(4)(f;x)=(1)/(15)XX^(')(16 X+3)f^((5))(x)+(1)/(144)X^(2)(113 X+26)f^((6))(x)],[+(1)/(24)X^(3)X^(')f^((7))(x)+(1)/(384)X^(4)f^((8))(x)],[b_(5)(f;x)=((1)/(6)X+(125)/(144)X^(2)(5X+2))f^((6))(x)+(1)/(120)X^(2)X^(')(109 X+22)f^((7))(x)],[+(1)/(576)X^(3)(145 X+34)f^((8))(x)+(1)/(144)X^(4)X^(')f^((9))(x)+(1)/(3840)X^(5)f^((10))(x)]:}\begin{aligned} b_{1}(f ; x)= & \frac{1}{2} X f^{\prime \prime}(x) \\ b_{2}(f ; x)= & \frac{1}{3} X X^{\prime} f^{(3)}(x)+\frac{1}{8} X^{2} f^{(4)}(x) \\ b_{3}(f ; x)= & \frac{1}{8} X(9 X+2) f^{(4)}(x)+\frac{1}{6} X^{2} X^{\prime} f^{(5)}(x)+\frac{1}{48} X^{3} f^{(6)}(x) \\ b_{4}(f ; x)= & \frac{1}{15} X X^{\prime}(16 X+3) f^{(5)}(x)+\frac{1}{144} X^{2}(113 X+26) f^{(6)}(x) \\ & +\frac{1}{24} X^{3} X^{\prime} f^{(7)}(x)+\frac{1}{384} X^{4} f^{(8)}(x) \\ b_{5}(f ; x)= & \left(\frac{1}{6} X+\frac{125}{144} X^{2}(5 X+2)\right) f^{(6)}(x)+\frac{1}{120} X^{2} X^{\prime}(109 X+22) f^{(7)}(x) \\ & +\frac{1}{576} X^{3}(145 X+34) f^{(8)}(x)+\frac{1}{144} X^{4} X^{\prime} f^{(9)}(x)+\frac{1}{3840} X^{5} f^{(10)}(x) \end{aligned}b1(f;x)=12Xf(x)b2(f;x)=13XXf(3)(x)+18X2f(4)(x)b3(f;x)=18X(9X+2)f(4)(x)+16X2Xf(5)(x)+148X3f(6)(x)b4(f;x)=115XX(16X+3)f(5)(x)+1144X2(113X+26)f(6)(x)+124X3Xf(7)(x)+1384X4f(8)(x)b5(f;x)=(16X+125144X2(5X+2))f(6)(x)+1120X2X(109X+22)f(7)(x)+1576X3(145X+34)f(8)(x)+1144X4Xf(9)(x)+13840X5f(10)(x)

REFERENCES

clickable →
clickable →
clickable →
[1] U. Abel, The moments for the Meyer-König and Zeller operators, J. Approx. Theory, 82 (1995), pp. 352-361. DOI: 10.1006/jath.1995.1084
[2] U. Abel, On the asymptotic approximation with operators of Bleimann, Butzer and Hahn, Indag. Math., New Ser., 7 (1996), pp. 1-9. DOI: 10.1016/0019-3577(96)88653-8
[3] U. Abel, The complete asymptotic expansion for the Meyer-König and Zeller operators, J. Math. Anal. Appl., 208 (1997), pp. 109-119. DOI: 10.1006/jmaa.1997.5295
[4] U. Abel, The asymptotic expansion for the Stancu operators, submitted.
[5] U. Abel, Asymptotic approximation with Kantorovich polynomials, submitted.
[6] J. A. Adell and J. de la Cal, On a Bernstein-type operator associated with the inverse Polya-Eggenberger distribution, Rend. Circolo Matem. Palermo, Ser. II, Nr. 33 (1993), pp. 143-154.
[7] F. Altomare and M. Campiti, "Korovkin-type approximation theory and its applications," Walter de Gruyter, Berlin, New York, 1994.
[8] S. N. Bernstein, Complément à l'article de E. Voronowskaja, Dokl. Akad. Nauk USSR, 4 (1932), pp. 86-92.
[9] R. A. DeVore and G. G. Lorentz, "Constructive approximation", Springer, Berlin, Heidelberg 1993.
[10] C. Jordan, "Calculus of finite differences," Chelsea, New York, 1965.
[11] M. K. Khan, Approximation properties of beta operators, Progress in Approx. Theory, Academic Press, New York, 1991, pp. 483-495.
[12] G. G. Lorentz, "Bernstein polynomials," University of Toronto Press, Toronto, 1953.
[13] A. Lupaş, "Die Folge der Beta-Operatoren," Dissertation, Universität Stuttgart, 1972.
[14] G. Mühlbach, Verallgemeinerungen der Bernstein- und der Lagrange-Polynome. Bemerkungen zu einer Klasse linearer Polynomoperatoren von D. D. Stancu, Rev. Roumaine Math. Pures Appl., 15 (1970), pp. 1235-1252.
clickable →
clickable → clickable →
[15] P. C. Sikkema, On some linear positive operators, Indag. Math., 32 (1970), pp. 327337. DOI: 10.1016/S1385-7258(70)80037-3
[16] P. C. Sikkema, On the asymptotic approximation with operators of Meyer-König and Zeller, Indag. Math., 32 (1970), pp. 428-440.
[17] D. D. Stancu, On the beta approximating operators of second kind, Rev. Anal. Numér. Théor. Approx., 24 (1995), pp. 231-239.
[18] R. Upreti, Approximation properties of Beta operators, J. Approx. Theory, 45 (1985), pp. 85-89. DOI: 10.1016/0021-9045(85)90036-X
[19] E. V. Voronovskaja, Détermination de la forme asymptotique de l' approximation des fonctions par les polynômes de S. Bernstein, Dokl. Akad. Nauk. SSSR, A (1932), pp. 79-85.
Received: May 30, 1997.

Ulrich Abel Lerchenweg 2, D-35435 Wettenberg, Germany,