Linear combinations of D.D. Stancu polynomials
Abstract
By using Markov-Polya probabilistic scheme, in 1968 D. D. Stancu introduced and studied a new class of linear positive operators of polynomial type. In this paper we investigate certain linear combinations of Stancu operators which, under additional requirements, approximate a function with a smaller error than the original polynomials.
Downloads
References
B. Della Vecchia, On the approximation of functions by means of the operators or D. D. Stancu, Studia Univ. Babeş-Bolyai, Mathematica, 37, 1 (1992), pp. 3-36.
A. Di Lorenzo and M. R.Occorsio, Polinomi di Stancu, Rapp. Tecnico, no. 121/95, I.A.M., Napoli, 1995.
H. H. Gonska and J. Meier, Quantitative theorems on approximation by Bernstein-Stancu operators, Calcolo 21 (1984), fasc. IV, pp. 317-335, https://doi.org/10.1007/bf02576170
G. G. Lorentz, Bernstein Polynomials,University of Toronto Press, Toronto, 1953.
G. Mastroianni and M. R. Occorsio, Sulle derivate dei polinomi di Stancu, Rend. Accad. Sci.Fis. Mat. Napoli, 45,4 (1978),pp.273-281.
. G. Mastroianni and M. R. Occorsi, Una generalizatione dell'operatore di Stancu, Rend. Accad. Sci. Fis. Mat. Napoli, 45, 4 (1978), pp. 495-511.
C. P. May, Saturation and inverse theorems for combinations of a class of exponential-type operators, Canad. J. Math., 28 (1976), pp.1224-1250, https://doi.org/10.4153/cjm-1976-123-8
G. Mühlbach, Verallgemeinerungen der Bernstein- und Lagrange-Polynome. Bemerkungen zu einer Klasse linearer Polynomoperatoren von D. D. Stancu, Rev. Roumaine Math. Pures Appl. 15, 8 (1970), pp. 1235-1252.
R. K. S. Rathore, Linear Combinations of Linear Positive Operators and Generating Relations in Special Functions, Thesis, I.l.T., Delhi, I 973.
D. D. Stancu, Approximation of functions by a new class of linear polynomial operators, Rev. Roumaine Math. Pures Appl., 13, 8 (1968), pp. 1173-1194.
D. D. Stancu, Use of probabilisticc methods in the theory of uniform approximation of continuous functions, Rev. Roumaine Math. Pures Appl., 14 (1969), pp. 673-691.
D. D. Stancu, Recurrence relations for the central moments of some discrete probability laws, Studia Univ. Babeş-Bolyai, Cluj, Ser. Math.-Mech., 15, I (1970), pp. 55-62.
D. D. Stancu, Approximaton properties of a class of linear positive operators, Studia Univ. Babeş-Bolyai, Cluj, Ser. Math.-Mech., 15, 2 ( 1970), pp. 33-38.
D. D, Stancu, on the remainder of approximation of functions by means of a paramneter dependent linear polynomial operator, Studia Univ. Babeş-Bolyai, Cluj, Ser. Math.-Mech., 16, 2 (1971), pp. 59-66.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2015 Journal of Numerical Analysis and Approximation Theory
This work is licensed under a Creative Commons Attribution 4.0 International License.
Open Access. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.