Numerical evaluation of Cauchy principal value integrals by means of nodal spline approximation
Abstract
Not available.Downloads
References
C.Dagnino, V.Demichelis and E.Santi, Numerical integration based on quasi-interpolating splines, Computing 50 (1993), 146-163, https://doi.org/10.1007/bf02238611
C. Dagnino, V. Demichelis and E. Santi, Local spline approximation methods for singular product integration, J. Appr.Theory and its Appl. 12 (1996), 37-51.
W. Dahmen, T.N.T. Goodman and C.A. Micchelli, Compactly supported fundamental functions for spline interpolation, Numer. Math. 52 (1988), 641-644.
P.J. Davis and P. Rabinowitz, Methods of Numerical Integration, Academic Press, New York, 1984.
J.M. De Villiers and C.H. Rohwer, Optimal local spline interpolants, J. Comp. Appl. Math. 18 (1987), 107-119, https://doi.org/10.1016/0377-0427(87)90059-8
J.M. De Villiers and C.H. Rohwer, A nodal spline generalization of the Lagrange interpolant, Progress in Appr. Theory (P.Nevai and A.Pinkus, Eds.), Academic Press, San Diego (1991), 201-211.
J.M. De Villiers, A convergence result in nodal spline interpolation, J.Approx. Theory 74 (1993), 266-279, https://doi.org/10.1006/jath.1993.1066
J.M. De Villiers and C.H. Rohwer, Sharp bounds for the Lebesgue constant in quadratic nodal spline interpolation, Intern. Series of Num. Math. 115 (1994), 1-13.
A. Erdelèyi, W.Magnus, F.Oberhettinger and F.G.Tricomi, Tables of integral transforms, Vol. II Mc Graw Hill, New York, 1954.
T. Lyche and L.L. Schumaker, Local spline approximation methods, J. Appr. Theory 15 (1975), 294-325, https://doi.org/10.1016/0021-9045(75)90091-x
P. Rabinowitz and I.H.Sloan, Product integration in the presence of a singularity, SIAM J. Numer. Anal. 21 (1984), 144-166, https://doi.org/10.1137/0721010
P. Rabinowitz, On the convergence of closed interpolatory integration rule based on zeros of Gegenbauer polynomials, J. Comp. Appl. Math. 17 (1987), 43-46, https://doi.org/10.1016/0377-0427(87)90037-9
P. Rabinowitz, Numerical integration based on approximating spline, J. Comp. Appl. Math. 33 (1990), 73-83, https://doi.org/10.1016/0377-0427(90)90257-z
P. Rabinowitz, Product integration of singular integrands using optimal nodal spline, Rend. Sem. Mat. Univ. Pol. Torino 51 (1993), 1-9.
E. Santi, On the evaluation of Cauchy principal value integrals by rules based on quasi-interpolating splines, J. Comp. Appl. Math. 71 (1996), 1-14, https://doi.org/10.1016/0377-0427(95)00213-8
L.L.Schumaker, Spline Functions, John Wiley & Sons 1981.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2015 Journal of Numerical Analysis and Approximation Theory
This work is licensed under a Creative Commons Attribution 4.0 International License.
Open Access. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.