On approximation properties of Stancu-Kantorovich operators


  • B. Della Vecchia Universita di Roma La Sapienza, Italy
  • D. H. Mache University of Dortmund, Germany
Abstract views: 152


Not available.


Download data is not yet available.


Z. Ditzian and V. Totik, Moduli of Smoothness, Springer-Verlag, New-York, 1987, https://doi.org/10.1007/978-1-4612-4778-4

P. J. Barry and R. N. Goldman, Interpolation and Approximation of Curves and Surfaces Using Polya Polynomials,manuscript, 1988.

B. Della Vecchia, On the approximation of functions by means of the operators of D. D. Stancu, Studia, Babeş-Bolyai, Math., XXXVII (1992), pp 3-36.

G. Farin and P. J. Barry, A link between Bézier and Lagrange curve and surfaces schemes, CAD,18 (1986), pp. 525-528, https://doi.org/10.1016/0010-4485(86)90039-4

R. N. Goldman, Pólya's urn model und Computer Aided Geometric Design, SIAM J. Alg. Disc. Meth. 6 (1985), pp. 1-28, https://doi.org/10.1137/0606001

B.Lenze, On Lipschitz-type maximal functions and their smoothness spaces, Proc. Netherl. Acad. Sci. A 91 (1988), pp. 53-63, https://doi.org/10.1016/1385-7258(88)90007-8

B. Lenze, Local error estimates for Bernstein and Kantorovich polynomial via maximal functions, Mitt. Math. Ges. Hamburg, XII, 3 (1991), pp. 713-722.

A. Lupaş and D. H. Mache, The θ-transformation of certain posititve linear operators, accepted for publication in: Internat. Journal of Mathematics and Mathematical Sciences, https://doi.org/10.1155/s0161171296000932




How to Cite

Della Vecchia, B., & Mache, D. H. (1998). On approximation properties of Stancu-Kantorovich operators. Rev. Anal. Numér. Théor. Approx., 27(1), 71–80. Retrieved from https://ictp.acad.ro/jnaat/journal/article/view/1998-vol27-no1-art8