Improving the rate of convergence of some Newton-like methods for the solution of nonlinear equations containing a nondifferentiable term

Authors

  • Ioannis K. Argyros Cameron University, Lawton, USA
  • Emil Cătinaș Tiberiu Popoviciu, Institute of Numerical Analysis, Romanian Academy, Romania
  • Ion Păvăloiu Tiberiu Popoviciu, Institute of Numerical Analysis, Romanian Academy, Romania
Abstract views: 288

Abstract

Not available.

Downloads

Download data is not yet available.

References

K. Argyros, On the solution of equations with nondffirentiable operators and the Ptak error estimates, BIT, 30 (1990), pp. 752-754, https://doi.org/10.1007/bf01933222

I. K. Argyros, On the solution of nonlinear equations with a nondffirentiable term, Rev. Anal. Numér. Théorie Approximation 22, 2 (1993), pp. 125-135.

I. K. Argyros, On some iterative methods for solving nonlinear equations with a nondffirentiable term of order between 1.618.., and 1.839.. (submitted to this joumal).

I. K. Argyros, and F. Szidarovszky, The Theory and Application of lteration Method, CR.C. Press, Inc., Boca Raton, Florida, 1993.

E. Cătinaş, On some ilerative methods for solving nonlinear equations, Rev. Anal. Numér, Theorie Approximation 23, I (1994), pp. 47 -53.

G. Goldner, and M. Balazs, Remarks on divided diferences and method of chords, Rev. Anal. Numér. Theorie Aapproximation 3, I (1974), pp. 19-30.

L. V. Kantorovich, The method of successive approximation for functional equations, Acta Math.71 (1939), pp. 63-97, https://doi.org/10.1007/bf02547750

J. M. Ortega and W. C. Rheinboldt, Iterative Solution of Nonlinear Equations in Several Variables, Academic Press, New York, 1970, https://doi.org/10.1016/b978-0-12-528550-6.50017-x

I. Păvăloiu, Sur une généralisation de la méthode de Steffensen, Rev. Anal. Numér. Theorie Approximation 21, 1 (1992), pp. 59-65.

I. Păvăloiu, A convergence theorem concerning the chord methods, Rev. Anal. Numér. Theorie Approximation 22, 1 (1993), pp. 83-85, https://doi.org/10.1002/fld.1650160106

F. A, Potra, On an iterative algorithm of order 1.839 . . .. for solving nonlinear equations, Numer. Funct. Anal. Optimiz. 7, I (1984-1985), pp. 75-106, https://doi.org/10.1080/01630568508816182

T. Yamamoto and X. Chen, Cohvergence domains of certain iterative methods for solving nonlinear equations, Numer. Funct. Anal. Optimiz. 10, 1 and 2 (1989), pp.37-48, https://doi.org/10.1080/01630568908816289

Downloads

Published

1998-08-01

How to Cite

Argyros, I. K., Cătinaș, E., & Păvăloiu, I. (1998). Improving the rate of convergence of some Newton-like methods for the solution of nonlinear equations containing a nondifferentiable term. Rev. Anal. Numér. Théor. Approx., 27(2), 191–202. Retrieved from https://ictp.acad.ro/jnaat/journal/article/view/1998-vol27-no2-art1

Issue

Section

Articles