Tests of efficiency for a discrete multicriteria optimization problem

Authors

  • V. A. Emelichev Minsk, Belarus
  • O. A. Yanushkevich Minsk, Belarus
Abstract views: 170

Abstract

Not available.

Downloads

Download data is not yet available.

References

T. C. Koopmans, Activity Analysis of Production and Allocation, John Wiley, New York, 1951.

S. Karlin, Mathematical Methods and Theory in Games, Programming and Econonics, Vols I and 2, Addison-Wesley, Reading, Mass, 1959.

P. L. Yu, Cone convexity, cone extreme points, and nondominated solutions in decision problems with multiobjectives, J. Optim. Theory Appl. 14, 3 (1974), pp.319-377, https://doi.org/10.1007/bf00932614

A. M. Geoffrion, Proper efficiency and the theory of vector Maximization, J. Math. Anal. Appl. 22 ( 1968), pp. 618-630, https://doi.org/10.1016/0022-247x(68)90201-1

R. Hartley, On cone-efficiency, cone-convexity and cone-compactness, SIAM J. on Applied Mathematics 34, 2 (1978), pp. 211-222, https://doi.org/10.1137/0134018

Yu. B. Germeyir, Introduction in Theory of Operations Research, Nauka, Moscow, 1971.

V. V. Podinovskii and V. D. Nogin, Pareto-optimal Solutions of Multicriteria Problems, Nauka, Moscow, 1982.

R, Steuer, Multiple Optimization: Theory, Computation and Application, John Wiley, New York, 1986.

A. Charnes and W. W. Cooper, Management Models and Industrial Application of Linear Programming, Jobn Wiley, New York, 1961.

L I. Melamed and I. H. Sigal, Research on Linear Convolution of the Criteria in the Multicriteria Diskcrete Programming, Comp. Maths Math. Phys. 35, 8 (1995), pp. 1260-1270.

V. A. Emelichev, A. A. Gladky, and O. A, Yanushkevich, On Multicriteria Problems of Finding Lexicographic Optimums, Izv. Akad. Nauk Belarusi, Seriya fiz. -mat. nauk. 3 (1996), pp. 82-86.

R. E. Burkard, H. Keiding, J. Krarup and P. M. Pruzan, A Relationship between Optimality and Effciency in Mutlticriteria 0-1 Programming Problems. Computers & Operations Research, 8, 4 (1981), pp. 241-247, https://doi.org/10.1016/0305-0548(81)90011-3

[[13] V. A, Yemelichev, M. K. Kravtsov and O. A. Yanushkevich, The Conditions of Pareto-Optimality in a Discrete Vector Problem on a System of Subsets, Comp. Maths Math. Phys. 35, 11 (1995), pp. 1321-1329.

P. Brucker, Discrete Parameter Optimization Problem and Essential Eficient Points, Operat. Res. 16, 5 (1972), pp. 189-197.

R. E. Burkard, J. Krarup and P. M. Pruzan, Efficiency and Optimality in Minisum, Minimax 0-1 Programming Problems. J. Oper. Res. Soc. 33, 2 (1982), pp.137-151, https://doi.org/10.1057/jors.1982.26

V. A. Emelichev and V. A. Perepelitsa, Complexity of Discrete Multicriteria Problems, Discrete Math. Appl. 4, 2 (1994), pp. 89-117, https://doi.org/10.1515/dma.1994.4.2.89

V. A. Yemelichev, M. M. Kovalev and M. K. Kravzov, Polytopes, Graphs and Optimization. Cambridge University Press, New York, 1984.

Downloads

Published

1998-08-01

How to Cite

Emelichev, V. A., & Yanushkevich, O. A. (1998). Tests of efficiency for a discrete multicriteria optimization problem. Rev. Anal. Numér. Théor. Approx., 27(2), 237–242. Retrieved from https://ictp.acad.ro/jnaat/journal/article/view/1998-vol27-no2-art5

Issue

Section

Articles