A class of discretely defined positive linear operators satisfying DeVore-Gopengauz inequalities
Keywords:
positive linear operators, DeVore-Gopengauz inequalities, second order modulus of continuity, endpoint interpolation, simultaneous approximationAbstract
We construct a class of discretely defined positive linear operators satisfying DeVore-Gopengauz inequalities, i.e., pointwise estimates in terms of the classical second order modulus with endpoint interpolation. Thus we provide a solution to a stronger form of a problem of Butzer. Simultaneous approximation is addressed as well.
Downloads
References
Ju. A. Brudnyi, Generalization of a theorem of A. F. Timan (in Russian), Dokl. Akad. Nauk SSSR 148 (1963), pp. 1237-1240.
J. D. Cao, and H. H. Gonska, Approximation by Boolean sums of positive linear operators, II. Gopengauz-type estimates, J. Approx. Theory 57 (1989), pp. 77-89, https://doi.org/10.1016/0021-9045(89)90085-3
J.-D. Cao, and H. H. Gonska, Computation of DeVore-Gopengauz-type approximants, In: Approximation Theory, VI (Proc. Int. Sympos. College Station, 1989), C. K. Chui et al. (Eds), New York, Academic Press, 1989, pp.177-120.
J.-D. Cao, H. H. Gonska and D. P. Kacsó, Simultaneous Approximation by Discretized Convolution-type Operators, Approximation and Optimization (Proceedings of ICAOR), Vol. I, Cluj-Napoca, 1996, pp. 203-218.
R. A. DeVore, Degree of Approximation, In:. Approximation Theory, II (Proc. Int. Sympos. Austin 1976), G. G. Lorentz, C, K. Chui, L. L. Schumaker (Eds), New York, Academic Press, 1976, pp. 117-161.
R. A. DeVore, Pointwise Approximation by Polynomials and Splines, ln: Theory of Approximation of Functions (Proc. Int. Conf. Kaluga, 1975), S. B, Stečkin, S. A. Telyakovskiĭ), Moscow, Izdat. "Nauka", 1977, pp. 132-144.
V. K. Dzjadyk, A further strengthening of Jackson's theorem on the approximation of continuous functions by ordinary polynomials (in Russian), Dokl. Akad. Nauk SSSR 121 (1958).
G. Freud, Uber die Approximation reeller stetiger Funktionen durchgewöhnliche Polynome, Math. Ann. 137 (1959), pp. 17-25, https://doi.org/10.1007/bf01343070
I. Garea, The approximation of the continuous functions by means of sone linear positive operators (to appear in: Resultate Math. 30 (1996), pp.55-66), https://doi.org/10.1007/bf03322180
A. Ghizzeti and A. Ossicini, Quadrature Formulae, Berlin, Akad. Verlag, 1970.
H. H. Gonska and R. K. Kovacheva, The second order modulus revisited: Remarks, applications, problems, Confer. Sem. Math. Univ, Bari 257 (1994),pp. 1-32.
H. H. Gonska and X.-L, Zhou, Polynomial approximation with side conditions: recent resulls and open problems, Proceeding of the First Intemational Colloquium on Numerical Analysis (Plovdiv 1992), D. Bainov, V. Covachev (Eds), Zeis/The Netherlands: VSP lnternational Science Publishers, 1993, pp. 61-71.
I. E. Gopengauz, A question concerning the approximation of functions on a segment and a region with corners (in Russian), Teor. Funktsiĭ Funktsional Anal. i Pril, 4 (1967), pp. 204-210.
Wy, Li, On Timan type theorems in algebraic polynomial approximation (Chinese), Acta Math. Sinica 29 (1986), pp. 544-549.
G. Szegö, Orthogonal Polynomials, Providence, RI. Amer. Math. Soc., 1985.
. S. A. Telyakovskiĭ, Two theorems on the approximation of functions by algebraic polynomials (in Russian), Mat. Sb. 70 (1966), pp. 252-265.
A. F. Timan, Strengthening of Jackson's theorem on best approximation of continuous functions given on a finite interval of the real axis (in Russian), Dokl. Akad. Nauk SSSR 78 (1951), pp. 17-20.
X.-M. Yu, Pointwise estimate for algebraic polynomial approximation, Approx. Theory Appl. 1 (1985), pp.109-114.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2015 Journal of Numerical Analysis and Approximation Theory
This work is licensed under a Creative Commons Attribution 4.0 International License.
Open Access. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.